Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline...Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline system(DLAPS)for diagnosing LLNM in PTC using computed tomography(CT).Methods:A total of 1,266 lateral lymph nodes(LLNs)from 519 PTC patients who underwent CT examinations from January 2019 to November 2022 were included and divided into training and validation set,internal test set,pooled external test set,and prospective test set.The DLAPS consists of an auto-segmentation network based on RefineNet model and a classification network based on ensemble model(ResNet,Xception,and DenseNet).The performance of the DLAPS was compared with that of manually segmented DL models,the clinical model,and Node Reporting and Data System(Node-RADS).The improvement of radiologists’diagnostic performance under the DLAPS-assisted strategy was explored.In addition,bulk RNA-sequencing was conducted based on 12 LLNs to reveal the underlying biological basis of the DLAPS.Results:The DLAPS yielded good performance with area under the receiver operating characteristic curve(AUC)of 0.872,0.910,and 0.822 in the internal,pooled external,and prospective test sets,respectively.The DLAPS significantly outperformed clinical models(AUC 0.731,P<0.001)and Node-RADS(AUC 0.602,P<0.001)in the internal test set.Moreover,the performance of the DLAPS was comparable to that of the manually segmented deep learning(DL)model with AUCs ranging 0.814−0.901 in three test sets.Furthermore,the DLAPSassisted strategy improved the performance of radiologists and enhanced inter-observer consistency.In clinical situations,the rate of unnecessary LLN dissection decreased from 33.33%to 7.32%.Furthermore,the DLAPS was associated with the cell-cell conjunction in the microenvironment.Conclusions:Using CT images from PTC patients,the DLAPS could effectively segment and classify LLNs non-invasively,and this system had a good generalization ability and clinical applicability.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose...BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Objective To observe the therapeutic effect of electro acupuncture at QIǖXǖ(丘墟GB40) for treating migraine and provide clinical study for Acupoints Dictionary of People's Republic of China. Methods Multi-center ...Objective To observe the therapeutic effect of electro acupuncture at QIǖXǖ(丘墟GB40) for treating migraine and provide clinical study for Acupoints Dictionary of People's Republic of China. Methods Multi-center (3 First-Class hospitals) study was adopted, and the involved 3 hospitals did clinical observation according to the requirements of the project. The methods are as follows. All cases were randomized into treatment group and control group according to their sequence. QIǖXǖ(丘墟GB40) was selected in treatment group, while Tiānshū (天枢 ST25) was selected in control group. Both groups were performed electro acupuncture, and syndromes indexes of migraine and 5-HT were observed before and after treatment. All data were analyzed by statistic software SPSS11.5. Results There was significant difference of VAS margin between two groups in each center and the combined center (u= -3. 362, P=0. 001 ). There was significant difference of therapeutic effect of 4-week treatment between two groups in each clinical center and the combined center. The therapeutic effect of 3-month treatment between two groups in No. 1 and No. 3 hospitals, showed significant difference, the treatment group was better; while that of No. 2 hospital had no obvious difference. The therapeutic effect of 6-month treatment between two groups in each center and the combined center had significant difference, the treatment group was better. Conclusion The therapy of electro acupuncture at QIǖXǖ(丘墟GB40) is effective for migraine.展开更多
We study high-order harmonic generation(HHG)from multi-center asymmetric linear molecules numerically and analytically.Our simulations show that odd and even HHG spectra of the asymmetric multi-center system respond d...We study high-order harmonic generation(HHG)from multi-center asymmetric linear molecules numerically and analytically.Our simulations show that odd and even HHG spectra of the asymmetric multi-center system respond differently to the change of the molecular structure.Specifically,when the internuclear distances between these nuclei of the molecule have a small change,the odd spectra usually do not change basically,but the even spectra differ remarkably.Based on this phenomenon,a simple procedure is proposed to probe the positions of these nuclei with odd–even HHG.Our results shed light on attosecond probing of the structure of multi-center molecules using HHG.展开更多
BACKGROUND Precleaning is a key step in endoscopic reprocessing.AIM To develop an effective and economic endoscope cleaning method by using a disposable endoscope bedside precleaning kit.METHODS Altogether,228 used ga...BACKGROUND Precleaning is a key step in endoscopic reprocessing.AIM To develop an effective and economic endoscope cleaning method by using a disposable endoscope bedside precleaning kit.METHODS Altogether,228 used gastrointestinal endoscopes were selected from five high-volume endoscopy units and precleaned by a traditional precleaning bucket(group T)or a disposable endoscope bedside precleaning kit(group D).Each group was further subdivided based on the replacement frequency of the cleaning solution,which was replaced every time in subgroups T1 and D1 and every several times in subgroups Ts and Ds.The adenosine triphosphate(ATP)level and residual proteins were measured three times:Before and after precleaning and after manual cleaning.RESULTS After precleaning,the precleaning kit significantly reduced the ATP levels(P=0.034)and has a more stable ATP clearance rate than the traditional precleaning bucket.The precleaning kit also saved a quarter of the cost of enzymatic detergent used during the precleaning process.After manual cleaning,the ATP levels were also significantly lower in the precleaning kit group than in the traditional precleaning bucket group(P<0.05).Meanwhile,the number of uses of the cleaning solution(up to four times)has no significant impact on the cleaning effect(P>0.05).CONCLUSION Considering its economic cost and cleaning effect,the use of a disposable endoscope bedside precleaning kit can be an optimal option in the precleaning stage with the cleaning solution being replaced several times in the manual cleaning stage.展开更多
The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a tre...The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practical use.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibr...The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.展开更多
We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy...We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
Yinshan anticline is the product of tectono-dynamic deformation - metamorphism .Along the axis of the anticline exists a brittle-ductile shearing zone which obviously controls the ore-formation . Mineralization occurs...Yinshan anticline is the product of tectono-dynamic deformation - metamorphism .Along the axis of the anticline exists a brittle-ductile shearing zone which obviously controls the ore-formation . Mineralization occurs along the axis of the anticline in a width of about 1000m .In the mining area .volcano- subvolcanic rocks of Early Yanshan period are divided into three cycles :Ⅰ intermediate acidic dacite lava and dacite porphyry ;Ⅱ acidic amphibole liparite and quartz porphyry;Ⅲ intermediate andesite porphyrite . Among them activities of ⅠandⅡ cycles are more intensive and are intimately related to the mineralization . Yinshan ore deposit is the result of combinative processes of tectono -dynamic and volcano -magmatic hydrothermal fluids, so that mere are two centers of metallogenic zoning, one being the axial strain zone of Yinshan anticline which is the center of first order, and the other being porphyry stock , 2nd order.展开更多
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
Purpose: The primary aim of this study was to investigate volume effect and safety of up to 50 mL/kg BW 6% hydroxyethyl starch (HES) 130/0.4 in adult and pediatric patients undergoing major elective surgery. The need ...Purpose: The primary aim of this study was to investigate volume effect and safety of up to 50 mL/kg BW 6% hydroxyethyl starch (HES) 130/0.4 in adult and pediatric patients undergoing major elective surgery. The need to infuse human albumin may be reduced or avoided in Japan if these large doses 6% HES 130/0.4 can be infused. Methods: The study was an uncontrolled, open-labeled, multi-center trial. Fifteen adult and 5 pediatric patients undergoing major elective surgery received 6% HES 130/0.4 (Voluven®) with a maximum dose of 50 mL/kg from the start of surgery until 2 hours after the end of surgery according to a treatment algorithm. The primary efficacy endpoint was the volume effect of 6% HES 130/0.4 determined by the volume of saved albumin during the investigational period and the time course of hemodynamic stability in adult and pediatric patients. Safety parameters were fluid balance, hemodynamic and laboratory parameters ECG, local and systemic tolerance and adverse events. Results: Adult patients received a mean of 32.0 mL/kg of 6% HES 130/0.4. For 12 out of 15 adult patients an average amount of 1033.8 mL (18.6 mL/kg) albumin could be saved. The other 3 adult patients did not receive more than 1000 mL of HES 130/0.4. All pediatric patients received approximately 50 mL/kg of HES 130/0.4;for these patients an average amount of 39.9 mL/kg body weight albumin could be saved. The majority of adult patients, and all pediatric patients were hemodynamically stable at all 3 time points. The observed changes of the assessed laboratory parameters including hematological and coagulation parameters or in any other safety parameter determined did not reveal any safety concern related to the administration of 6% HES 130/0.4 up to doses of 50 mL/kg body weight. Conclusion: The study results indicate that 6% HES 130/0.4 has a reliable volume effect, could contribute to significant human albumin savings and was safe and well tolerated up to a maximum dose of 50 mL/kg body weight in adult and pediatric patients undergoing major elective surgery.展开更多
基金supported by the Taishan Scholar Project(No.ts20190991,No.tsqn202211378)the Key R&D Project of Shandong Province(No.2022CXPT023)+1 种基金the General Program of National Natural Science Foundation of China(No.82371933)the Medical and Health Technology Project of Shandong Province(No.202307010677)。
文摘Objective:The assessment of lateral lymph node metastasis(LLNM)in patients with papillary thyroid carcinoma(PTC)holds great significance.This study aims to develop and evaluate a deep learning-based automatic pipeline system(DLAPS)for diagnosing LLNM in PTC using computed tomography(CT).Methods:A total of 1,266 lateral lymph nodes(LLNs)from 519 PTC patients who underwent CT examinations from January 2019 to November 2022 were included and divided into training and validation set,internal test set,pooled external test set,and prospective test set.The DLAPS consists of an auto-segmentation network based on RefineNet model and a classification network based on ensemble model(ResNet,Xception,and DenseNet).The performance of the DLAPS was compared with that of manually segmented DL models,the clinical model,and Node Reporting and Data System(Node-RADS).The improvement of radiologists’diagnostic performance under the DLAPS-assisted strategy was explored.In addition,bulk RNA-sequencing was conducted based on 12 LLNs to reveal the underlying biological basis of the DLAPS.Results:The DLAPS yielded good performance with area under the receiver operating characteristic curve(AUC)of 0.872,0.910,and 0.822 in the internal,pooled external,and prospective test sets,respectively.The DLAPS significantly outperformed clinical models(AUC 0.731,P<0.001)and Node-RADS(AUC 0.602,P<0.001)in the internal test set.Moreover,the performance of the DLAPS was comparable to that of the manually segmented deep learning(DL)model with AUCs ranging 0.814−0.901 in three test sets.Furthermore,the DLAPSassisted strategy improved the performance of radiologists and enhanced inter-observer consistency.In clinical situations,the rate of unnecessary LLN dissection decreased from 33.33%to 7.32%.Furthermore,the DLAPS was associated with the cell-cell conjunction in the microenvironment.Conclusions:Using CT images from PTC patients,the DLAPS could effectively segment and classify LLNs non-invasively,and this system had a good generalization ability and clinical applicability.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金Supported by National Key Technology Research and Developmental Program of China,No.2022YFC2704400 and No.2022YFC2704405.
文摘BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘Objective To observe the therapeutic effect of electro acupuncture at QIǖXǖ(丘墟GB40) for treating migraine and provide clinical study for Acupoints Dictionary of People's Republic of China. Methods Multi-center (3 First-Class hospitals) study was adopted, and the involved 3 hospitals did clinical observation according to the requirements of the project. The methods are as follows. All cases were randomized into treatment group and control group according to their sequence. QIǖXǖ(丘墟GB40) was selected in treatment group, while Tiānshū (天枢 ST25) was selected in control group. Both groups were performed electro acupuncture, and syndromes indexes of migraine and 5-HT were observed before and after treatment. All data were analyzed by statistic software SPSS11.5. Results There was significant difference of VAS margin between two groups in each center and the combined center (u= -3. 362, P=0. 001 ). There was significant difference of therapeutic effect of 4-week treatment between two groups in each clinical center and the combined center. The therapeutic effect of 3-month treatment between two groups in No. 1 and No. 3 hospitals, showed significant difference, the treatment group was better; while that of No. 2 hospital had no obvious difference. The therapeutic effect of 6-month treatment between two groups in each center and the combined center had significant difference, the treatment group was better. Conclusion The therapy of electro acupuncture at QIǖXǖ(丘墟GB40) is effective for migraine.
基金Project supported by the National Natural Science Foundation of China(Grants No.91750111)the Youth Foundation of Hebei Province Education Department,China(Grant No.QN2017028)+2 种基金the Fundamental Research Funds for Hebei GEO University,China(Grant No.BQ2017047)the Natural Science Foundation of Hebei Province,China(Grant No.A2015205161)the Fundamental Research Funds for the Central Universities,China(Grant No.SNNU.GK201801009)
文摘We study high-order harmonic generation(HHG)from multi-center asymmetric linear molecules numerically and analytically.Our simulations show that odd and even HHG spectra of the asymmetric multi-center system respond differently to the change of the molecular structure.Specifically,when the internuclear distances between these nuclei of the molecule have a small change,the odd spectra usually do not change basically,but the even spectra differ remarkably.Based on this phenomenon,a simple procedure is proposed to probe the positions of these nuclei with odd–even HHG.Our results shed light on attosecond probing of the structure of multi-center molecules using HHG.
文摘BACKGROUND Precleaning is a key step in endoscopic reprocessing.AIM To develop an effective and economic endoscope cleaning method by using a disposable endoscope bedside precleaning kit.METHODS Altogether,228 used gastrointestinal endoscopes were selected from five high-volume endoscopy units and precleaned by a traditional precleaning bucket(group T)or a disposable endoscope bedside precleaning kit(group D).Each group was further subdivided based on the replacement frequency of the cleaning solution,which was replaced every time in subgroups T1 and D1 and every several times in subgroups Ts and Ds.The adenosine triphosphate(ATP)level and residual proteins were measured three times:Before and after precleaning and after manual cleaning.RESULTS After precleaning,the precleaning kit significantly reduced the ATP levels(P=0.034)and has a more stable ATP clearance rate than the traditional precleaning bucket.The precleaning kit also saved a quarter of the cost of enzymatic detergent used during the precleaning process.After manual cleaning,the ATP levels were also significantly lower in the precleaning kit group than in the traditional precleaning bucket group(P<0.05).Meanwhile,the number of uses of the cleaning solution(up to four times)has no significant impact on the cleaning effect(P>0.05).CONCLUSION Considering its economic cost and cleaning effect,the use of a disposable endoscope bedside precleaning kit can be an optimal option in the precleaning stage with the cleaning solution being replaced several times in the manual cleaning stage.
文摘The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practical use.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370 and 12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)。
文摘The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.
基金the National Natural Science Foundation of China(Grant Nos.12004370,11534011,and 11934004)the National Key Research and Development Program of China(Grant Nos.2017YFA0402300 and 2019YFA0210004).
文摘We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
文摘Yinshan anticline is the product of tectono-dynamic deformation - metamorphism .Along the axis of the anticline exists a brittle-ductile shearing zone which obviously controls the ore-formation . Mineralization occurs along the axis of the anticline in a width of about 1000m .In the mining area .volcano- subvolcanic rocks of Early Yanshan period are divided into three cycles :Ⅰ intermediate acidic dacite lava and dacite porphyry ;Ⅱ acidic amphibole liparite and quartz porphyry;Ⅲ intermediate andesite porphyrite . Among them activities of ⅠandⅡ cycles are more intensive and are intimately related to the mineralization . Yinshan ore deposit is the result of combinative processes of tectono -dynamic and volcano -magmatic hydrothermal fluids, so that mere are two centers of metallogenic zoning, one being the axial strain zone of Yinshan anticline which is the center of first order, and the other being porphyry stock , 2nd order.
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
文摘Purpose: The primary aim of this study was to investigate volume effect and safety of up to 50 mL/kg BW 6% hydroxyethyl starch (HES) 130/0.4 in adult and pediatric patients undergoing major elective surgery. The need to infuse human albumin may be reduced or avoided in Japan if these large doses 6% HES 130/0.4 can be infused. Methods: The study was an uncontrolled, open-labeled, multi-center trial. Fifteen adult and 5 pediatric patients undergoing major elective surgery received 6% HES 130/0.4 (Voluven®) with a maximum dose of 50 mL/kg from the start of surgery until 2 hours after the end of surgery according to a treatment algorithm. The primary efficacy endpoint was the volume effect of 6% HES 130/0.4 determined by the volume of saved albumin during the investigational period and the time course of hemodynamic stability in adult and pediatric patients. Safety parameters were fluid balance, hemodynamic and laboratory parameters ECG, local and systemic tolerance and adverse events. Results: Adult patients received a mean of 32.0 mL/kg of 6% HES 130/0.4. For 12 out of 15 adult patients an average amount of 1033.8 mL (18.6 mL/kg) albumin could be saved. The other 3 adult patients did not receive more than 1000 mL of HES 130/0.4. All pediatric patients received approximately 50 mL/kg of HES 130/0.4;for these patients an average amount of 39.9 mL/kg body weight albumin could be saved. The majority of adult patients, and all pediatric patients were hemodynamically stable at all 3 time points. The observed changes of the assessed laboratory parameters including hematological and coagulation parameters or in any other safety parameter determined did not reveal any safety concern related to the administration of 6% HES 130/0.4 up to doses of 50 mL/kg body weight. Conclusion: The study results indicate that 6% HES 130/0.4 has a reliable volume effect, could contribute to significant human albumin savings and was safe and well tolerated up to a maximum dose of 50 mL/kg body weight in adult and pediatric patients undergoing major elective surgery.