In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can a...In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show the accuracy of the proposed method compared with some existing methods.展开更多
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ...Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor...Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.展开更多
Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and re...Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.展开更多
We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear ...We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.展开更多
A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results ...A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.展开更多
In this paper, an improved Differential Evolution (DE) that incorporates double wavelet-based operations is proposed to solve the Economic Load Dispatch (ELD) problem. The double wavelet mutations are applied in order...In this paper, an improved Differential Evolution (DE) that incorporates double wavelet-based operations is proposed to solve the Economic Load Dispatch (ELD) problem. The double wavelet mutations are applied in order to enhance DE in exploring the solution space more effectively for better solution quality and stability. The first stage of wavelet operation is embedded in the DE mutation operation, in which the scaling factor is governed by a wavelet function. In the second stage, a wavelet-based mutation operation is embedded in the DE crossover operation. The trial population vectors are modified by the wavelet function. A suite of benchmark test functions is employed to evaluate the performance of the proposed DE in different problems. The result shows empirically that the proposed method out-performs signifycantly the conventional methods in terms of convergence speed, solution quality and solution stability. Then the proposed method is applied to the Economic Load Dispatch with Valve-Point Loading (ELD-VPL) problem, which is a process to share the power demand among the online generators in a power system for minimum fuel cost. Two different conditions of the ELD problem have been tested in this paper. It is observed that the proposed method gives satisfactory optimal costs when compared with the other techniques in the literature.展开更多
The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, which has been widely applied in various fields. Global numerical optimization is a very important and...The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, which has been widely applied in various fields. Global numerical optimization is a very important and extremely dif-ficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an opposition-based DE algorithm for global numerical optimization, which is called GNO2DE. In GNO2DE, firstly, the opposite point method is employed to utilize the existing search space to improve the convergence speed. Secondly, two candidate DE strategies “DE/rand/1/bin” and “DE/current to best/2/bin” are randomly chosen to make the most of their respective advantages to enhance the search ability. In order to reduce the number of control parameters, this algorithm uses an adaptive crossover rate dynamically tuned during the evolutionary process. Finally, it is validated on a set of benchmark test functions for global numerical optimization. Compared with several existing algorithms, the performance of GNO2DE is superior to or not worse than that of these algorithms in terms of final accuracy, convergence speed, and robustness. In addition, we also especially compare the opposition-based DE algorithm with the DE algorithm without using the opposite point method, and the DE algorithm using “DE/rand/1/bin” or “DE/current to best/2/bin”, respectively.展开更多
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-...In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.展开更多
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H...Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.展开更多
为解决源荷双侧不确定性对冷热电联供CCHP(combined cooling,heating and power)型微网经济运行带来的电量实时平衡问题,提出一种基于鲁棒理论的CCHP微网电、热、冷混合储能容量配置模型。基于鲁棒理论,建立源荷双侧不确定性变量合集。...为解决源荷双侧不确定性对冷热电联供CCHP(combined cooling,heating and power)型微网经济运行带来的电量实时平衡问题,提出一种基于鲁棒理论的CCHP微网电、热、冷混合储能容量配置模型。基于鲁棒理论,建立源荷双侧不确定性变量合集。考虑储能设备日折算成本,以微网运行成本最低为目标,采用自适应差分进化算法对模型进行求解,得到不同预测精度与置信概率下的微网储能最优容量合集。通过设置评价指标,选取最合适的储能配置方案,对微网配置储能前后的调度情况作对比。结果表明,基于鲁棒理论配置的电、热、冷这3类储能可有效提升微网在源荷双侧不确定下的电力电量实时平衡能力与运行经济性。展开更多
文摘In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show the accuracy of the proposed method compared with some existing methods.
文摘Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金This work is supported by Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/STG06/UTHM/03/7).
文摘Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.
文摘Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.
基金the National Natural Science Foundation of China(No.70 0 710 42 and No.60 0 73 0 43 )
文摘We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.
基金Project(2011FJ3016)supported by the Research Foundation of Science & Technology Office of Hunan Province,China
文摘A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.
文摘In this paper, an improved Differential Evolution (DE) that incorporates double wavelet-based operations is proposed to solve the Economic Load Dispatch (ELD) problem. The double wavelet mutations are applied in order to enhance DE in exploring the solution space more effectively for better solution quality and stability. The first stage of wavelet operation is embedded in the DE mutation operation, in which the scaling factor is governed by a wavelet function. In the second stage, a wavelet-based mutation operation is embedded in the DE crossover operation. The trial population vectors are modified by the wavelet function. A suite of benchmark test functions is employed to evaluate the performance of the proposed DE in different problems. The result shows empirically that the proposed method out-performs signifycantly the conventional methods in terms of convergence speed, solution quality and solution stability. Then the proposed method is applied to the Economic Load Dispatch with Valve-Point Loading (ELD-VPL) problem, which is a process to share the power demand among the online generators in a power system for minimum fuel cost. Two different conditions of the ELD problem have been tested in this paper. It is observed that the proposed method gives satisfactory optimal costs when compared with the other techniques in the literature.
文摘The Differential Evolution (DE) algorithm is arguably one of the most powerful stochastic optimization algorithms, which has been widely applied in various fields. Global numerical optimization is a very important and extremely dif-ficult task in optimization domain, and it is also a great need for many practical applications. This paper proposes an opposition-based DE algorithm for global numerical optimization, which is called GNO2DE. In GNO2DE, firstly, the opposite point method is employed to utilize the existing search space to improve the convergence speed. Secondly, two candidate DE strategies “DE/rand/1/bin” and “DE/current to best/2/bin” are randomly chosen to make the most of their respective advantages to enhance the search ability. In order to reduce the number of control parameters, this algorithm uses an adaptive crossover rate dynamically tuned during the evolutionary process. Finally, it is validated on a set of benchmark test functions for global numerical optimization. Compared with several existing algorithms, the performance of GNO2DE is superior to or not worse than that of these algorithms in terms of final accuracy, convergence speed, and robustness. In addition, we also especially compare the opposition-based DE algorithm with the DE algorithm without using the opposite point method, and the DE algorithm using “DE/rand/1/bin” or “DE/current to best/2/bin”, respectively.
文摘In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints.
文摘Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.
文摘为解决源荷双侧不确定性对冷热电联供CCHP(combined cooling,heating and power)型微网经济运行带来的电量实时平衡问题,提出一种基于鲁棒理论的CCHP微网电、热、冷混合储能容量配置模型。基于鲁棒理论,建立源荷双侧不确定性变量合集。考虑储能设备日折算成本,以微网运行成本最低为目标,采用自适应差分进化算法对模型进行求解,得到不同预测精度与置信概率下的微网储能最优容量合集。通过设置评价指标,选取最合适的储能配置方案,对微网配置储能前后的调度情况作对比。结果表明,基于鲁棒理论配置的电、热、冷这3类储能可有效提升微网在源荷双侧不确定下的电力电量实时平衡能力与运行经济性。