In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric...In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.展开更多
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio...Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.展开更多
Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling cap...Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.展开更多
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai...A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.展开更多
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann...Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th...Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.展开更多
The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandw...The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandwich structure composite thermal insulation(STI)board(copper//silica dioxide aerogel//copper)with the advantages of low thermal conductivity(0.031 W m-1K-1),low surface radiation emissivity(0.1)and good thermal convection inhibition effect has been designed.The thermal runaway(TR)occurrence time of adjacent LIBs increases from 1384 s to more than 6 h+due to the protection of STI board.No TR propagation occurs within LIBs modules with protect of a STI board when a battery catches fire.The ultra-strong-heat-shielding mechanism of STI board has been revealed.The TR propagation of LIBs modules has been insulated effectively by STI board through reducing the heat transfer of convection,conduction and radiation.The air flow rate between the heater and LIBs and radiant heat absorbed by LIBs decrease by 63.5%and 35.1%with protection of STI board,respectively.A high temperature difference inside the STI board is also formed.This work provides direction for the designing of safe thermal insulation board for LIBs modules.展开更多
Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conduc...Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conductivity and enhanced charge carrier mobility.Thus,achieving(011)facet-exposed films is a promising way to improve device performance.However,the growth of(011)facets is energetically unfavorable in FAPbI_(3) perovskites due to the influence of methylammonium chloride additive.Here,1-butyl-4-methylpyridinium chloride([4MBP]Cl)was used to expose(011)facets.The[4MBP]^(+)cation selectively decreases the surface energy of the(011)facet enabling the growth of the(011)plane.The[4MBP]^(+)cation causes the perovskite nuclei to rotate by 45°such that(011)crystal facets stack along the out-of-plane direction.The(011)facet has excellent charge transport properties and can achieve better-matched energy level alignment.In addition,[4MBP]Cl increases the activation energy barrier for ion migration,suppressing decomposition of the perovskite.As a result,a small-size device(0.06 cm2)and a module(29.0 cm2)based on exposure of the(011)facet achieved power conversion efficiencies of 25.24%and 21.12%,respectively.展开更多
Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufac...Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Let M be a finitely generated free semimodule over a semiring S with identity having invariant basis number property with a basisα={α1,...,αk}.The complement■of the reduced non-zero component graph■of M,is the si...Let M be a finitely generated free semimodule over a semiring S with identity having invariant basis number property with a basisα={α1,...,αk}.The complement■of the reduced non-zero component graph■of M,is the simple undirected graph with■as the vertex set and such that there is an edge between two distinct vertices■and■if and only if there exists no i such that both ai,biare non-zero.In this paper,we show that the graph■is connected and find its domination number,clique number and chromatic number.In the case of finite semirings,we determine the degree of each vertex,order,size,vertex connectivity and girth of■.Also,we give a necessary and sufficient condition for■to be Eulerian or Hamiltonian or planar.展开更多
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake...Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.展开更多
The simple modules for electrical Lie algebra of type D5 were investigated.The sufficient and necessary criteria of the simple Z-graded highest weight modules were established by means of determining the singular vect...The simple modules for electrical Lie algebra of type D5 were investigated.The sufficient and necessary criteria of the simple Z-graded highest weight modules were established by means of determining the singular vectors of the Verma modules.The simple highest weight module is isomorphic to either that for the symplectic Lie algebra sp4 or Verma module.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable dep...Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas,which is an unsettled but urgent issue.In this work,a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure,considerably enhancing the coverage and smoothness of the perovskite films.The long gemini surfactant plays a distinctively synergistic role in perovskite film construction,crystallization kinetics modulation and defect passivation,leading to a certified record power conversion efficiency of 15.46%with Voc of 1.13 V and Jsc of 22.92 mA cm^(-2)for this type of modules.Importantly,all of the functional layers of the module are printed through a simple and high-speed(300 cm min^(-1))blade coating strategy in ambient atmosphere.These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.展开更多
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using t...Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
基金supported in part by the National Key Research and Development Program of China(2021YFA0716601)the National Science Fund(62225111).
文摘In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.
文摘Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.
文摘Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques.
基金the financial support from Shanxi Province Science and Technology Department(20201101012,202101060301016)the support from the APRC Grant of the City University of Hong Kong(9380086)+5 种基金the TCFS Grant(GHP/018/20SZ)MRP Grant(MRP/040/21X)from the Innovation and Technology Commission of Hong Kongthe Green Tech Fund(202020164)from the Environment and Ecology Bureau of Hong Kongthe GRF grants(11307621,11316422)from the Research Grants Council of Hong KongGuangdong Major Project of Basic and Applied Basic Research(2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002).
文摘A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
基金Project supported by the National Natural Science Foundation of China(Nos.12072183 and11872236)the Key Research Project of Zhejiang Laboratory(No.2021PE0AC02)。
文摘Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
基金financially supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800104)the National Natural Science Foundation of China(51822203,52002140,U20A20252,51861145404,62105293,62205187)+4 种基金the Young Elite Scientists Sponsorship Program by CAST,the Self-determined and Innovative Research Funds of HUST(2020KFYXJJS008)the Natural Science Foundation of Hubei Province(ZRJQ2022000408)the Shenzhen Science and Technology Innovation Committee(JCYJ20180507182257563)Fundamental Research Program of Shanxi Province(202103021223032)the Innovation Project of Optics Valley Laboratory of China(OVL2021BG008)。
文摘Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.
基金the support from the National Science and Technology Major Project(J2019-VIII-00100171)the National Natural Science Foundation of China(51991352,51973203)+3 种基金the China Postdoctoral Special Funding(2019TQ0309)the China Postdoctoral Science Foundation(2020M671904)the Fundamental Research Funds for the Central Universities(WK2320000057)the University of Synergy Innovation Program of Anhui Province(GXXT-2020-079)。
文摘The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandwich structure composite thermal insulation(STI)board(copper//silica dioxide aerogel//copper)with the advantages of low thermal conductivity(0.031 W m-1K-1),low surface radiation emissivity(0.1)and good thermal convection inhibition effect has been designed.The thermal runaway(TR)occurrence time of adjacent LIBs increases from 1384 s to more than 6 h+due to the protection of STI board.No TR propagation occurs within LIBs modules with protect of a STI board when a battery catches fire.The ultra-strong-heat-shielding mechanism of STI board has been revealed.The TR propagation of LIBs modules has been insulated effectively by STI board through reducing the heat transfer of convection,conduction and radiation.The air flow rate between the heater and LIBs and radiant heat absorbed by LIBs decrease by 63.5%and 35.1%with protection of STI board,respectively.A high temperature difference inside the STI board is also formed.This work provides direction for the designing of safe thermal insulation board for LIBs modules.
基金This work was funded by the European Union’s Horizon 2020 program,through a FET Proactive research and innovation action under grant agreement No.101084124(DIAMOND)supported by the 111 Project(B16016),and the Project of Scientific and Technological Support Program in Jiang Su Province(BE2022026-2)+2 种基金K.Z.thanks to the China Scholarship Council(no.202206730056)X.F.Z.thanks to the China Scholarship Council(no.202206730058)R.W.acknowledges the grant(LD22E020002)by the Natural Science Foundation of Zhejiang Province of China.
文摘Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conductivity and enhanced charge carrier mobility.Thus,achieving(011)facet-exposed films is a promising way to improve device performance.However,the growth of(011)facets is energetically unfavorable in FAPbI_(3) perovskites due to the influence of methylammonium chloride additive.Here,1-butyl-4-methylpyridinium chloride([4MBP]Cl)was used to expose(011)facets.The[4MBP]^(+)cation selectively decreases the surface energy of the(011)facet enabling the growth of the(011)plane.The[4MBP]^(+)cation causes the perovskite nuclei to rotate by 45°such that(011)crystal facets stack along the out-of-plane direction.The(011)facet has excellent charge transport properties and can achieve better-matched energy level alignment.In addition,[4MBP]Cl increases the activation energy barrier for ion migration,suppressing decomposition of the perovskite.As a result,a small-size device(0.06 cm2)and a module(29.0 cm2)based on exposure of the(011)facet achieved power conversion efficiencies of 25.24%and 21.12%,respectively.
基金supported by the National Natural Science Foundation of China(U1930117,12204445)。
文摘Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by CSIR Emeritus Scientist Scheme(21(1123)/20/EMR-II)of Council of Scientific and Industrial Researchthis research is also supported by Dr.M.G.R.Research Scholarship by Manonmaniam Sundaranar University。
文摘Let M be a finitely generated free semimodule over a semiring S with identity having invariant basis number property with a basisα={α1,...,αk}.The complement■of the reduced non-zero component graph■of M,is the simple undirected graph with■as the vertex set and such that there is an edge between two distinct vertices■and■if and only if there exists no i such that both ai,biare non-zero.In this paper,we show that the graph■is connected and find its domination number,clique number and chromatic number.In the case of finite semirings,we determine the degree of each vertex,order,size,vertex connectivity and girth of■.Also,we give a necessary and sufficient condition for■to be Eulerian or Hamiltonian or planar.
基金supported in part by National Key R&D Program of China (2021YFB2500600)CAS Youth multi-discipline project (JCTD-2021-09)Strategic Piority Research Program of Chinese Academy of Sciences (XDA28040100)。
文摘Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.
基金Fundamental Research Funds for the Central Universities,China(No.2232021G13)。
文摘The simple modules for electrical Lie algebra of type D5 were investigated.The sufficient and necessary criteria of the simple Z-graded highest weight modules were established by means of determining the singular vectors of the Verma modules.The simple highest weight module is isomorphic to either that for the symplectic Lie algebra sp4 or Verma module.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金supported by the National Natural Science Foundation of China(U2001217,22261160370 and 21972006)Guangdong-Hong Kong-Macao Joint Innovation Foundation(2021A0505110003)+1 种基金Shenzhen Basic Research(JCYJ20220818101018038 and JCYJ20200109110628172)Guangdong Province Regional Joint Innovation Foundation(2020B1515120039)。
文摘Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas,which is an unsettled but urgent issue.In this work,a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure,considerably enhancing the coverage and smoothness of the perovskite films.The long gemini surfactant plays a distinctively synergistic role in perovskite film construction,crystallization kinetics modulation and defect passivation,leading to a certified record power conversion efficiency of 15.46%with Voc of 1.13 V and Jsc of 22.92 mA cm^(-2)for this type of modules.Importantly,all of the functional layers of the module are printed through a simple and high-speed(300 cm min^(-1))blade coating strategy in ambient atmosphere.These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
文摘Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.