Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam...Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples.展开更多
随着Web 所拥有的信息量和信息种类的急剧增长,Web 站点挖掘对于自动实现特定主题的 Web 资源发现和分类具有重要的意义.然而现有的 Web 站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入...随着Web 所拥有的信息量和信息种类的急剧增长,Web 站点挖掘对于自动实现特定主题的 Web 资源发现和分类具有重要的意义.然而现有的 Web 站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入研究.从站点的采样尺寸、分析粒度和描述结构 3 个方面分析了设计高效的 Web 站点挖掘算法所需要解决的问题.在此基础上,提出了一种新的 Web 站点多粒度树描述模型,并描述了包括基于隐 Markov 树的两阶段分类算法、粒度间上下文融合算法、两阶段去噪程序以及基于熵的动态剪枝策略在内的多粒度 Web 站点挖掘算法.站点的多粒度描述方法及挖掘算法为多站点查询优化、Web 效用挖掘等的深入研究奠定了基础.实验表明,该算法相对于基线系统平均可以提高 16%的分类准确率,并减少了 34.5%的处理时间.展开更多
针对二叉树支持向量机多分类算法准确率与分类效率较低的问题,提出了一种基于加权模糊隶属度的二叉树支持向量机多分类算法(binary tree support vector machines multi-classification algorithm based on weighted fuzzy membership,P...针对二叉树支持向量机多分类算法准确率与分类效率较低的问题,提出了一种基于加权模糊隶属度的二叉树支持向量机多分类算法(binary tree support vector machines multi-classification algorithm based on weighted fuzzy membership,PF-BTSVM)。该算法依据最大最小样本距离与质心距离构造出一个近似完全二叉树,提高了整体结构的分类效率;利用模糊隶属度函数以及正负辅助惩罚因子对训练集进行筛选,剔除掉对分类无用的样本与噪声值,实现了训练集的提纯并且削弱了不平衡分类时超平面的偏移。在数据集上的实验结果表明,与其他二叉树多分类算法相比,该算法在提高分类准确率以及稳定性的同时,还加快了训练与分类的速度,而且当分类的不平衡度越大时这种优势越明显。展开更多
基金Item Sponsored by National Natural Science Foundation of China(61050006)
文摘Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples.
文摘随着Web 所拥有的信息量和信息种类的急剧增长,Web 站点挖掘对于自动实现特定主题的 Web 资源发现和分类具有重要的意义.然而现有的 Web 站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入研究.从站点的采样尺寸、分析粒度和描述结构 3 个方面分析了设计高效的 Web 站点挖掘算法所需要解决的问题.在此基础上,提出了一种新的 Web 站点多粒度树描述模型,并描述了包括基于隐 Markov 树的两阶段分类算法、粒度间上下文融合算法、两阶段去噪程序以及基于熵的动态剪枝策略在内的多粒度 Web 站点挖掘算法.站点的多粒度描述方法及挖掘算法为多站点查询优化、Web 效用挖掘等的深入研究奠定了基础.实验表明,该算法相对于基线系统平均可以提高 16%的分类准确率,并减少了 34.5%的处理时间.
文摘针对二叉树支持向量机多分类算法准确率与分类效率较低的问题,提出了一种基于加权模糊隶属度的二叉树支持向量机多分类算法(binary tree support vector machines multi-classification algorithm based on weighted fuzzy membership,PF-BTSVM)。该算法依据最大最小样本距离与质心距离构造出一个近似完全二叉树,提高了整体结构的分类效率;利用模糊隶属度函数以及正负辅助惩罚因子对训练集进行筛选,剔除掉对分类无用的样本与噪声值,实现了训练集的提纯并且削弱了不平衡分类时超平面的偏移。在数据集上的实验结果表明,与其他二叉树多分类算法相比,该算法在提高分类准确率以及稳定性的同时,还加快了训练与分类的速度,而且当分类的不平衡度越大时这种优势越明显。