Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine...Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.展开更多
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise...Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.展开更多
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang...During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model.展开更多
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based...Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.展开更多
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ...In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.展开更多
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f...Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency.展开更多
Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The ...Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves.展开更多
With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and...With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and the safety of robot,the identification of mature citrus fruit and obstacle is the priority of robotic harvesting.In this work,a machine vision system,which consisted of a color CCD camera and a computer,was developed to achieve these tasks.Images of citrus trees were captured under sunny and cloudy conditions.Due to varying degrees of lightness and position randomness of fruits and branches,red,green,and blue values of objects in these images are changed dramatically.The traditional threshold segmentation is not efficient to solve these problems.Multi-class support vector machine(SVM),which succeeds by morphological operation,was used to simultaneously segment the fruits and branches in this study.The recognition rate of citrus fruit was 92.4%,and the branch of which diameter was more than 5 pixels,could be recognized.The results showed that the algorithm could be used to detect the fruits and branches for CHR.展开更多
Most target grabbing problems have been dealt with by computer vision system, however, computer vision method is not always enough when it comes to the precision contact grabbing problems during the teleoperation proc...Most target grabbing problems have been dealt with by computer vision system, however, computer vision method is not always enough when it comes to the precision contact grabbing problems during the teleoperation process, and need to be combined with the stiffness display to provide more effective information to the operator on the remote side. Therefore, in this paper a more portable stiffness display device with a small volume and extended function is developed based on our previous work. A new static load calibration of the improved stiffness display device is performed to detect its accuracy, and the relationship between the stiffness and the position is given. An effective target grabbing strategy is presented to help operator on the remote side to judge and control and the target is classified by multi-class SVM(supporter vector machine). The teleoperation system is established to test and verify the feasibility. A special experiment is designed and the results demonstrate that the improved stiffness display device could greatly help operator on the remote side control the telerobot to grab target and the target grabbing strategy is effective.展开更多
In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,ex...In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,expensive equipment,low accuracy,and difficulty in real-time monitoring.The proposed system is based on Commodity WiFi and is easy to deploy.Leveraging WiFi CSI data,this paper proposes a feature extraction method based on multi-scale and multi-channel entropy.The feasibility and stability of the system are validated through experiments in both Line-Of-Sight(LOS)and Non-Line-Of-Sight(NLOS)scenarios,where ten types of wheat moisture content are tested using multi-class Support Vector Machine(SVM).Compared with the Wi-Wheat system proposed in our prior work,Wi-Wheatþhas higher efficiency,requiring only a simple training process,and can sense more wheat moisture content levels.展开更多
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam...Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples.展开更多
Indefinite kernel support vector machine(IKSVM)has recently attracted increasing attentions in machine learning.Since IKSVM essentially is a non-convex problem,existing algorithms either change the spectrum of indefin...Indefinite kernel support vector machine(IKSVM)has recently attracted increasing attentions in machine learning.Since IKSVM essentially is a non-convex problem,existing algorithms either change the spectrum of indefinite kernel directly but risking losing some valuable information or solve the dual form of IKSVM whereas suffering from a dual gap problem.In this paper,we propose a primal perspective for solving the problem.That is,we directly focus on the primal form of IKSVM and present a novel algorithm termed as IKSVM-DC for binary and multi-class classification.Concretely,according to the characteristics of the spectrum for the indefinite kernel matrix,IKSVM-DC decomposes the primal function into the subtraction of two convex functions as a difference of convex functions(DC)programming.To accelerate convergence rate,IKSVM-DC combines the classical DC algorithm with a line search step along the descent direction at each iteration.Furthermore,we construct a multi-class IKSVM model which can classify multiple classes in a unified form.A theoretical analysis is then presented to validate that IKSVM-DC can converge to a local minimum.Finally,we conduct experiments on both binary and multi-class datasets and the experimental results show that IKSVM-DC is superior to other state-of-the-art IKSVM algorithms.展开更多
文摘Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201310)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201160)the China Postdoctoral Science Foundation(Grant No.20110491067)
文摘Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.
基金funded by Qatar University Internal Grant under Grant No.IRCC-2020-009.The ndings achieved herein are solely the responsibility of the authors。
文摘During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model.
基金University Science Foundation of Jiangsu Province (04KJD510018)
文摘Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.
基金the 973 Program of China (No.2002CB312200)the National Science Foundation of China (No.60574019)
文摘In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.
文摘Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency.
文摘Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves.
基金International Science&Technology Cooperation Program of China(2013DFA11470)the National Natural Science Foundation of China(30771243)+1 种基金International Science&Technology Cooperation Program of Chongqing(cstc2011gjhz80001)Fundamental Research Funds for the Central Universities(XDJK2013C102).
文摘With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and the safety of robot,the identification of mature citrus fruit and obstacle is the priority of robotic harvesting.In this work,a machine vision system,which consisted of a color CCD camera and a computer,was developed to achieve these tasks.Images of citrus trees were captured under sunny and cloudy conditions.Due to varying degrees of lightness and position randomness of fruits and branches,red,green,and blue values of objects in these images are changed dramatically.The traditional threshold segmentation is not efficient to solve these problems.Multi-class support vector machine(SVM),which succeeds by morphological operation,was used to simultaneously segment the fruits and branches in this study.The recognition rate of citrus fruit was 92.4%,and the branch of which diameter was more than 5 pixels,could be recognized.The results showed that the algorithm could be used to detect the fruits and branches for CHR.
基金partially supported by the National Natural Science Foundation of China(61663027,61325018,81501560)the Science and Technology Department of Jiangxi Province of China(20151BAB207050)
文摘Most target grabbing problems have been dealt with by computer vision system, however, computer vision method is not always enough when it comes to the precision contact grabbing problems during the teleoperation process, and need to be combined with the stiffness display to provide more effective information to the operator on the remote side. Therefore, in this paper a more portable stiffness display device with a small volume and extended function is developed based on our previous work. A new static load calibration of the improved stiffness display device is performed to detect its accuracy, and the relationship between the stiffness and the position is given. An effective target grabbing strategy is presented to help operator on the remote side to judge and control and the target is classified by multi-class SVM(supporter vector machine). The teleoperation system is established to test and verify the feasibility. A special experiment is designed and the results demonstrate that the improved stiffness display device could greatly help operator on the remote side control the telerobot to grab target and the target grabbing strategy is effective.
基金supported in part by the Program for Science&Technology Innovation Talents in Universities of Henan Province(19HASTIT027)National Natural Science Foundation of China(62172141)+4 种基金Zhengzhou Major Scientific and Technological Innovation Project(2019CXZX0086)Youth Innovative Talents Cultivation Fund Project of Kaifeng University in 2020(KDQN-2020-GK002)the National Key Research and Development Program of China(2017YFD0401001)the NSFC(61741107),the NSF(CNS-2105416)by the Wireless Engineering Research and Education Center at Auburn University.
文摘In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,expensive equipment,low accuracy,and difficulty in real-time monitoring.The proposed system is based on Commodity WiFi and is easy to deploy.Leveraging WiFi CSI data,this paper proposes a feature extraction method based on multi-scale and multi-channel entropy.The feasibility and stability of the system are validated through experiments in both Line-Of-Sight(LOS)and Non-Line-Of-Sight(NLOS)scenarios,where ten types of wheat moisture content are tested using multi-class Support Vector Machine(SVM).Compared with the Wi-Wheat system proposed in our prior work,Wi-Wheatþhas higher efficiency,requiring only a simple training process,and can sense more wheat moisture content levels.
基金Item Sponsored by National Natural Science Foundation of China(61050006)
文摘Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples.
基金the National Key R&D Program of China(2017YFB1002801)the National Natural Science Foundations of China(Grant Nos.61375057,61876091 and 61403193).
文摘Indefinite kernel support vector machine(IKSVM)has recently attracted increasing attentions in machine learning.Since IKSVM essentially is a non-convex problem,existing algorithms either change the spectrum of indefinite kernel directly but risking losing some valuable information or solve the dual form of IKSVM whereas suffering from a dual gap problem.In this paper,we propose a primal perspective for solving the problem.That is,we directly focus on the primal form of IKSVM and present a novel algorithm termed as IKSVM-DC for binary and multi-class classification.Concretely,according to the characteristics of the spectrum for the indefinite kernel matrix,IKSVM-DC decomposes the primal function into the subtraction of two convex functions as a difference of convex functions(DC)programming.To accelerate convergence rate,IKSVM-DC combines the classical DC algorithm with a line search step along the descent direction at each iteration.Furthermore,we construct a multi-class IKSVM model which can classify multiple classes in a unified form.A theoretical analysis is then presented to validate that IKSVM-DC can converge to a local minimum.Finally,we conduct experiments on both binary and multi-class datasets and the experimental results show that IKSVM-DC is superior to other state-of-the-art IKSVM algorithms.