This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin...This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based...Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.展开更多
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine...Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.展开更多
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla...The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset.展开更多
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise...Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.展开更多
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav...The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.展开更多
The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more...The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more. This has led to the multi-class switch architecture to cater for the needs for different QoS requirements. The introduction of threshold in multi-class switch to solve the starvation problems in loss sensitive class has increased the mean delay for delay sensitive class. In this research, a new scheduling architecture is introduced to improve mean delay in delay sensitive class when the threshold is active. The proposed architecture has been simulated under uniform and non-uniform traffic to show performance of the switch in terms of mean delay. The results show that the proposed architecture has achieved better performance as compared to Weighted Fair Queueing (WFQ) and Priority Queue (PQ).展开更多
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang...During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model.展开更多
A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detectio...A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detection, the multi-class method is constructed with Hadamard matrix and two-class Support Vector Machines. In order to minimize the complexity of the algorithm, sparse coding method is applied in this paper. The comprehensive experimental results show that this modified multi-class method has better attack detection rate compared with other three coding algorithms, and its time efficiency is higher than Hadamard coding algorithm.展开更多
Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-...Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-bearing pegmatites.Therefore,remote-sensing techniques can be an effective means for prospecting Li-bearing pegmatites.In this study,the fault information and lithologyical information in the region were obtained using the median-resolution remotesensing image Landsat-8,the radar image Sentinel-1 and hyperspectral data GF-5.Using Landsat-8 data,the hydroxyl alteration information closely related to pegmatite in the region was extracted by principal component analysis,pseudoanomaly processing and other methods.The high spatial resolution remote-sensing data WorldView-2 and WorldView-3 short-wave infrared images were used and analyzed by principal component analysis(PCA),the band ratio method and multi-class machine learning(ML),combined with conventional thresholds specified the algorithms used to automatically extract Li-bearing pegmatite information.Finally,the Li-bearing pegmatite exploration area was determined,based on a comprehensive analysis of the faults,hydroxyl alteration lithology and Li-bearing pegmatite information.Field investigations have verified that the distribution of pegmatites in the central part of the study area is consistent with that of Li-bearing pegmatites extracted in this study.This study provides a new technique for prospecting Li-bearing pegmatites,which shows that remote-sensing technology possesses great potential for identifying lithium-bearing pegmatites,especially in areas that are not readily accessible.展开更多
Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and processing.Any kind of malicious or abnormal fu...Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and processing.Any kind of malicious or abnormal function by each of these devices can jeopardize the security of the entire IIoT.Moreover,they can allow malicious software installed on end nodes to penetrate the network.This paper presents a parallel ensemble model for threat hunting based on anomalies in the behavior of IIoT edge devices.The proposed model is flexible enough to use several state-of-the-art classifiers as the basic learner and efficiently classifies multi-class anomalies using the Multi-class AdaBoost and majority voting.Experimental evaluations using a dataset consisting of multi-source normal records and multi-class anomalies demonstrate that our model outperforms existing approaches in terms of accuracy,F1 score,recall,and precision.展开更多
Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified in...Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified into binary classes i.e.,positive and negative.However,fine-grained classification provides a better insight into the sentiments.The downside is that fine-grained classification is more challenging as compared to binary.On the contrary,performance deteriorates significantly in the case of multi-class classification.In this study,pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored.To augment the performance,a multi-layer classification model has been proposed.Owing to similitude with social media text,the movie reviews dataset has been used for the implementation.Supervised machine learning models namely Decision Tree,Support Vector Machine,and Naive Bayes models have been implemented for the task of sentiment classification.We have compared the models of single-layer architecture with multi-tier model.The results of Multi-tier model have slight improvement over the single-layer architecture.Moreover,multi-tier models have better recall which allow our proposed model to learn more context.We have discussed certain shortcomings of the model that will help researchers to design multi-tier models with more contextual information.展开更多
Amodel that can obtain rapid and accurate detection of coronavirus disease 2019(COVID-19)plays a significant role in treating and preventing the spread of disease transmission.However,designing such amodel that can ba...Amodel that can obtain rapid and accurate detection of coronavirus disease 2019(COVID-19)plays a significant role in treating and preventing the spread of disease transmission.However,designing such amodel that can balance the detection accuracy andweight parameters ofmemorywell to deploy a mobile device is challenging.Taking this point into account,this paper fuses the convolutional neural network and residual learning operations to build a multi-class classification model,which improves COVID-19 pneumonia detection performance and keeps a trade-off between the weight parameters and accuracy.The convolutional neural network can extract the COVID-19 feature information by repeated convolutional operations.The residual learning operations alleviate the gradient problems caused by stacking convolutional layers and enhance the ability of feature extraction.The ability further enables the proposed model to acquire effective feature information at a lowcost,which canmake ourmodel keep smallweight parameters.Extensive validation and comparison with other models of COVID-19 pneumonia detection on the well-known COVIDx dataset show that(1)the sensitivity of COVID-19 pneumonia detection is improved from 88.2%(non-COVID-19)and 77.5%(COVID-19)to 95.3%(non-COVID-19)and 96.5%(COVID-19),respectively.The positive predictive value is also respectively increased from72.8%(non-COVID-19)and 89.0%(COVID-19)to 88.8%(non-COVID-19)and 95.1%(COVID-19).(2)Compared with the weight parameters of the COVIDNet-small network,the value of the proposed model is 13 M,which is slightly higher than that(11.37 M)of the COVIDNet-small network.But,the corresponding accuracy is improved from 85.2%to 93.0%.The above results illustrate the proposed model can gain an efficient balance between accuracy and weight parameters.展开更多
Full electronic automation in stock exchanges has recently become popular,generat-ing high-frequency intraday data and motivating the development of near real-time price forecasting methods.Machine learning algorithms...Full electronic automation in stock exchanges has recently become popular,generat-ing high-frequency intraday data and motivating the development of near real-time price forecasting methods.Machine learning algorithms are widely applied to mid-price stock predictions.Processing raw data as inputs for prediction models(e.g.,data thinning and feature engineering)can primarily affect the performance of the prediction methods.However,researchers rarely discuss this topic.This motivated us to propose three novel modelling strategies for processing raw data.We illustrate how our novel modelling strategies improve forecasting performance by analyzing high-frequency data of the Dow Jones 30 component stocks.In these experiments,our strategies often lead to statistically significant improvement in predictions.The three strategies improve the F1 scores of the SVM models by 0.056,0.087,and 0.016,respectively.展开更多
In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks o...In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.展开更多
In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,ex...In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,expensive equipment,low accuracy,and difficulty in real-time monitoring.The proposed system is based on Commodity WiFi and is easy to deploy.Leveraging WiFi CSI data,this paper proposes a feature extraction method based on multi-scale and multi-channel entropy.The feasibility and stability of the system are validated through experiments in both Line-Of-Sight(LOS)and Non-Line-Of-Sight(NLOS)scenarios,where ten types of wheat moisture content are tested using multi-class Support Vector Machine(SVM).Compared with the Wi-Wheat system proposed in our prior work,Wi-Wheatþhas higher efficiency,requiring only a simple training process,and can sense more wheat moisture content levels.展开更多
This paper studies the effect of breaking single-class building data into multi-class building data for semantic segmentation under end-to-end architecture such as UNet, UNet++, DeepLabV3, and DeepLabv3+. Although, th...This paper studies the effect of breaking single-class building data into multi-class building data for semantic segmentation under end-to-end architecture such as UNet, UNet++, DeepLabV3, and DeepLabv3+. Although, the already existing semantic segmentation methods for building detection work on the imagery of developed world, where the buildings are highly structured and there is a clearly distinguishable space present between the building instances, the same methods do not work as effectively on the developing world where there is often no clear differentiable spaces between instances of building thus reducing the number of detected instances. Hence as a noble approach, we have added building contours as new class along with building segmentation data, and detected the building contours and the inner building regions, hence giving the precise number of buildings existing in the input imagery especially in the convoluted areas where the boundary between the buildings are often hard to determine even for human eyes. Breaking down the building data into multi-class data increased the building detection precision and recall. This is useful in building detection where building instances are convoluted and are difficult for bare instance segmentation to detect all the instances.展开更多
With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deepe...With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deeper the model is,the higher the accuracy is.However,very deep neural networks would be affected by the overfitting problem and also consume huge computing resources.In this paper,a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning.We construct an up-to-date combinational convolutional neural network(CBNet)with a subnet merging technique.Firstly,two different neural networks are utilized for learning interested features.Then,a well-designed feature fusion component aggregates the features from subnetworks,further extracting richer and more precise features for image classification.In order to learn more complementary features,the corresponding fusion strategies are also proposed,including auxiliary classifiers and hyperparameters setting.Finally,CBNet based on the well-known VGGNet,ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category.Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks.展开更多
基金The National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z202)the National Key Technology R & D Program of China during the 11th Five-Year Plan Period(No. 2006BAJ18B03)the Fundamental Research Funds for the Central Universities (No. DUT10RC(3) 112)
文摘This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金University Science Foundation of Jiangsu Province (04KJD510018)
文摘Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises.
文摘Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.
基金supported by the National Natural Science Foundation of China(61703131 61703129+1 种基金 61701148 61703128)
文摘The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201310)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201160)the China Postdoctoral Science Foundation(Grant No.20110491067)
文摘Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.
文摘The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.
文摘The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more. This has led to the multi-class switch architecture to cater for the needs for different QoS requirements. The introduction of threshold in multi-class switch to solve the starvation problems in loss sensitive class has increased the mean delay for delay sensitive class. In this research, a new scheduling architecture is introduced to improve mean delay in delay sensitive class when the threshold is active. The proposed architecture has been simulated under uniform and non-uniform traffic to show performance of the switch in terms of mean delay. The results show that the proposed architecture has achieved better performance as compared to Weighted Fair Queueing (WFQ) and Priority Queue (PQ).
基金funded by Qatar University Internal Grant under Grant No.IRCC-2020-009.The ndings achieved herein are solely the responsibility of the authors。
文摘During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model.
文摘A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detection, the multi-class method is constructed with Hadamard matrix and two-class Support Vector Machines. In order to minimize the complexity of the algorithm, sparse coding method is applied in this paper. The comprehensive experimental results show that this modified multi-class method has better attack detection rate compared with other three coding algorithms, and its time efficiency is higher than Hadamard coding algorithm.
基金supported by the National Key Research and Development Program of the China Geological Survey(DD20190173)the Fundamental Research Funds for the Institute of Mineral Resources,the Chinese Academy of Geological Sciences(KK2102)+1 种基金the National Natural Science Foundation of China(42172332)the Chinese Geological Survey Project(DD20190379)。
文摘Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-bearing pegmatites.Therefore,remote-sensing techniques can be an effective means for prospecting Li-bearing pegmatites.In this study,the fault information and lithologyical information in the region were obtained using the median-resolution remotesensing image Landsat-8,the radar image Sentinel-1 and hyperspectral data GF-5.Using Landsat-8 data,the hydroxyl alteration information closely related to pegmatite in the region was extracted by principal component analysis,pseudoanomaly processing and other methods.The high spatial resolution remote-sensing data WorldView-2 and WorldView-3 short-wave infrared images were used and analyzed by principal component analysis(PCA),the band ratio method and multi-class machine learning(ML),combined with conventional thresholds specified the algorithms used to automatically extract Li-bearing pegmatite information.Finally,the Li-bearing pegmatite exploration area was determined,based on a comprehensive analysis of the faults,hydroxyl alteration lithology and Li-bearing pegmatite information.Field investigations have verified that the distribution of pegmatites in the central part of the study area is consistent with that of Li-bearing pegmatites extracted in this study.This study provides a new technique for prospecting Li-bearing pegmatites,which shows that remote-sensing technology possesses great potential for identifying lithium-bearing pegmatites,especially in areas that are not readily accessible.
文摘Industrial Internet of Things(IIoT)systems depend on a growing number of edge devices such as sensors,controllers,and robots for data collection,transmission,storage,and processing.Any kind of malicious or abnormal function by each of these devices can jeopardize the security of the entire IIoT.Moreover,they can allow malicious software installed on end nodes to penetrate the network.This paper presents a parallel ensemble model for threat hunting based on anomalies in the behavior of IIoT edge devices.The proposed model is flexible enough to use several state-of-the-art classifiers as the basic learner and efficiently classifies multi-class anomalies using the Multi-class AdaBoost and majority voting.Experimental evaluations using a dataset consisting of multi-source normal records and multi-class anomalies demonstrate that our model outperforms existing approaches in terms of accuracy,F1 score,recall,and precision.
基金This research is funded by Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR03.
文摘Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified into binary classes i.e.,positive and negative.However,fine-grained classification provides a better insight into the sentiments.The downside is that fine-grained classification is more challenging as compared to binary.On the contrary,performance deteriorates significantly in the case of multi-class classification.In this study,pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored.To augment the performance,a multi-layer classification model has been proposed.Owing to similitude with social media text,the movie reviews dataset has been used for the implementation.Supervised machine learning models namely Decision Tree,Support Vector Machine,and Naive Bayes models have been implemented for the task of sentiment classification.We have compared the models of single-layer architecture with multi-tier model.The results of Multi-tier model have slight improvement over the single-layer architecture.Moreover,multi-tier models have better recall which allow our proposed model to learn more context.We have discussed certain shortcomings of the model that will help researchers to design multi-tier models with more contextual information.
基金This work was supported in part by the science and technology research project of Henan Provincial Department of science and technology(No.222102110366)the Science and Technology Innovation Team of Henan University(No.22IRTSTHN016)the grants from the teaching reform research and practice project of higher education in Henan Province in 2021[2021SJGLX502].
文摘Amodel that can obtain rapid and accurate detection of coronavirus disease 2019(COVID-19)plays a significant role in treating and preventing the spread of disease transmission.However,designing such amodel that can balance the detection accuracy andweight parameters ofmemorywell to deploy a mobile device is challenging.Taking this point into account,this paper fuses the convolutional neural network and residual learning operations to build a multi-class classification model,which improves COVID-19 pneumonia detection performance and keeps a trade-off between the weight parameters and accuracy.The convolutional neural network can extract the COVID-19 feature information by repeated convolutional operations.The residual learning operations alleviate the gradient problems caused by stacking convolutional layers and enhance the ability of feature extraction.The ability further enables the proposed model to acquire effective feature information at a lowcost,which canmake ourmodel keep smallweight parameters.Extensive validation and comparison with other models of COVID-19 pneumonia detection on the well-known COVIDx dataset show that(1)the sensitivity of COVID-19 pneumonia detection is improved from 88.2%(non-COVID-19)and 77.5%(COVID-19)to 95.3%(non-COVID-19)and 96.5%(COVID-19),respectively.The positive predictive value is also respectively increased from72.8%(non-COVID-19)and 89.0%(COVID-19)to 88.8%(non-COVID-19)and 95.1%(COVID-19).(2)Compared with the weight parameters of the COVIDNet-small network,the value of the proposed model is 13 M,which is slightly higher than that(11.37 M)of the COVIDNet-small network.But,the corresponding accuracy is improved from 85.2%to 93.0%.The above results illustrate the proposed model can gain an efficient balance between accuracy and weight parameters.
基金Canada Research Chair(950231363,XZ),Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grants(RGPIN-20203530,LX)the Social Sciences and Humanities Research Council of Canada(SSHRC)Insight Development Grants(430-2018-00557,KX).
文摘Full electronic automation in stock exchanges has recently become popular,generat-ing high-frequency intraday data and motivating the development of near real-time price forecasting methods.Machine learning algorithms are widely applied to mid-price stock predictions.Processing raw data as inputs for prediction models(e.g.,data thinning and feature engineering)can primarily affect the performance of the prediction methods.However,researchers rarely discuss this topic.This motivated us to propose three novel modelling strategies for processing raw data.We illustrate how our novel modelling strategies improve forecasting performance by analyzing high-frequency data of the Dow Jones 30 component stocks.In these experiments,our strategies often lead to statistically significant improvement in predictions.The three strategies improve the F1 scores of the SVM models by 0.056,0.087,and 0.016,respectively.
文摘In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.
基金supported in part by the Program for Science&Technology Innovation Talents in Universities of Henan Province(19HASTIT027)National Natural Science Foundation of China(62172141)+4 种基金Zhengzhou Major Scientific and Technological Innovation Project(2019CXZX0086)Youth Innovative Talents Cultivation Fund Project of Kaifeng University in 2020(KDQN-2020-GK002)the National Key Research and Development Program of China(2017YFD0401001)the NSFC(61741107),the NSF(CNS-2105416)by the Wireless Engineering Research and Education Center at Auburn University.
文摘In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,expensive equipment,low accuracy,and difficulty in real-time monitoring.The proposed system is based on Commodity WiFi and is easy to deploy.Leveraging WiFi CSI data,this paper proposes a feature extraction method based on multi-scale and multi-channel entropy.The feasibility and stability of the system are validated through experiments in both Line-Of-Sight(LOS)and Non-Line-Of-Sight(NLOS)scenarios,where ten types of wheat moisture content are tested using multi-class Support Vector Machine(SVM).Compared with the Wi-Wheat system proposed in our prior work,Wi-Wheatþhas higher efficiency,requiring only a simple training process,and can sense more wheat moisture content levels.
文摘This paper studies the effect of breaking single-class building data into multi-class building data for semantic segmentation under end-to-end architecture such as UNet, UNet++, DeepLabV3, and DeepLabv3+. Although, the already existing semantic segmentation methods for building detection work on the imagery of developed world, where the buildings are highly structured and there is a clearly distinguishable space present between the building instances, the same methods do not work as effectively on the developing world where there is often no clear differentiable spaces between instances of building thus reducing the number of detected instances. Hence as a noble approach, we have added building contours as new class along with building segmentation data, and detected the building contours and the inner building regions, hence giving the precise number of buildings existing in the input imagery especially in the convoluted areas where the boundary between the buildings are often hard to determine even for human eyes. Breaking down the building data into multi-class data increased the building detection precision and recall. This is useful in building detection where building instances are convoluted and are difficult for bare instance segmentation to detect all the instances.
基金This paper is partially supported by National Natural Foundation of China(Grant No.61772561)the Key Research&Development Plan of Hunan Province(Grant No.2018NK2012)+2 种基金Postgraduate Research and Innovative Project of Central South University of Forestry and Technology(Grant No.20183012)Graduate Education and Teaching Reform Project of Central South University of Forestry and Technology(Grant No.2018JG005)Teaching Reform Project of Central South University of Forestry and Technology(Grant No.20180682).
文摘With the development of deep learning and Convolutional Neural Networks(CNNs),the accuracy of automatic food recognition based on visual data have significantly improved.Some research studies have shown that the deeper the model is,the higher the accuracy is.However,very deep neural networks would be affected by the overfitting problem and also consume huge computing resources.In this paper,a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning.We construct an up-to-date combinational convolutional neural network(CBNet)with a subnet merging technique.Firstly,two different neural networks are utilized for learning interested features.Then,a well-designed feature fusion component aggregates the features from subnetworks,further extracting richer and more precise features for image classification.In order to learn more complementary features,the corresponding fusion strategies are also proposed,including auxiliary classifiers and hyperparameters setting.Finally,CBNet based on the well-known VGGNet,ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category.Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks.