To detect higher order polynomial phase signals (HOPPSs), the smoothed-pseudo polynomial Wigner-Ville distribution (SP-PVCVD), an improved version of the polynomial Wigner-Ville distribution (PVCVD), is presente...To detect higher order polynomial phase signals (HOPPSs), the smoothed-pseudo polynomial Wigner-Ville distribution (SP-PVCVD), an improved version of the polynomial Wigner-Ville distribution (PVCVD), is presented using a separable kernel. By adjusting the lengths of the functions in the kernel, the balance between resolution retaining and interference suppressing can be adjusted conveniently. The proposed method with merits of interference terms reduction and noise suppression can provide time frequency representation of better readability and more accurate instantaneous frequency (IF) estimation with higher order SP-PVfVD. The performance of the SP-PWVD is verified by computer simulations.展开更多
Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the rad...Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.展开更多
Based on the polynomial phase-modulating sequences algorithm, this paper presents two schemes for the application of CDMA with polynomial phase signals to improve the signal separation performance. Simulation results...Based on the polynomial phase-modulating sequences algorithm, this paper presents two schemes for the application of CDMA with polynomial phase signals to improve the signal separation performance. Simulation results illustrate the proposed approach have 1~3?dB improvement about signal-to-interference and noise ratio in most environment, compared with the PPS algorithm.展开更多
基金supported partly by the Program for New Century Excellent Talents in University, Ministry of Education,China(NCET-05-0803)supported by Information Controlling Technology of Communication System National Key Laboratory(9140C1301020801).
文摘To detect higher order polynomial phase signals (HOPPSs), the smoothed-pseudo polynomial Wigner-Ville distribution (SP-PVCVD), an improved version of the polynomial Wigner-Ville distribution (PVCVD), is presented using a separable kernel. By adjusting the lengths of the functions in the kernel, the balance between resolution retaining and interference suppressing can be adjusted conveniently. The proposed method with merits of interference terms reduction and noise suppression can provide time frequency representation of better readability and more accurate instantaneous frequency (IF) estimation with higher order SP-PVfVD. The performance of the SP-PWVD is verified by computer simulations.
文摘Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.
文摘Based on the polynomial phase-modulating sequences algorithm, this paper presents two schemes for the application of CDMA with polynomial phase signals to improve the signal separation performance. Simulation results illustrate the proposed approach have 1~3?dB improvement about signal-to-interference and noise ratio in most environment, compared with the PPS algorithm.