Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Short-chain fatty acids (SCFA) play an important role in human biochemistry. They originate primarily from the digestive system through carbohydrates microbial fermentation. Most SCFA produced in the colon are absorbe...Short-chain fatty acids (SCFA) play an important role in human biochemistry. They originate primarily from the digestive system through carbohydrates microbial fermentation. Most SCFA produced in the colon are absorbed by the intestinal wall and enter the bloodstream to be distributed throughout the body for multiple purposes. At the intestinal level, SCFA play a role in controlling fat storage and fatty acid metabolism. The effects of these beneficial compounds therefore concern overall health. They facilitate energy expenditure and are valuable allies in the fight against obesity and diabetes. SCFA are also involved in the regulation of the levels of several neurotransmitters such as GABA (γ-aminobutyric acid), glutamate, serotonin, dopamine, and norepinephrine. Their role is also highlighted in many inflammatory and neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s disease (PD). To have a realistic picture of the distribution of SCFA in different biological compartments of the human body, we propose to study SCFA simultaneously in five human biological samples: feces, saliva, serum, cerebrospinal fluid (CSF), and urine, as well as in Dried Blood Spot (DBS). To evaluate their concentration and repeatability, we used 10 aliquots from pooled samples, analyzed by 3-nitrophenylhydrazine (3-NPH) derivation and liquid chromatography coupled with high sensitivity mass spectrometry (LC-QqQ-MS). We also evaluated the SCFA assay on Dried Blood Spot (DBS). In this work, we adapted the pre-analytical parts for each sample to be able to use a common calibration curve, thus facilitating multi-assay quantification studies and so being less time-consuming. Moreover, we proposed new daughter ions from the same neutral loss (43 Da) to quantify SCFAs, thus improving the sensitivity. In conclusion, our methodology, based on a unique calibration curve for all samples for each SCFA, is well-suited to quantified them in a clinical context.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti...3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma...The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.展开更多
Artificial intelligence(AI),particularly machine learning(ML)and deep learning(DL)techniques,such as convolutional neural networks(CNNs),have emerged as transformative technologies with vast potential in healthcare.Bo...Artificial intelligence(AI),particularly machine learning(ML)and deep learning(DL)techniques,such as convolutional neural networks(CNNs),have emerged as transformative technologies with vast potential in healthcare.Body iron load is usually assessed using slightly invasive blood tests(serum ferritin,serum iron,and serum transferrin).Serum ferritin is widely used to assess body iron and drive medical management;however,it is an acute phase reactant protein offering wrong interpretation in the setting of inflammation and distressed patients.Magnetic resonance imaging is a non-invasive technique that can be used to assess liver iron.The ML and DL algorithms can be used to enhance the detection of minor changes.However,a lack of open-access datasets may delay the advancement of medical research in this field.In this letter,we highlight the importance of standardized datasets for advancing AI and CNNs in medical imaging.Despite the current limitations,embracing AI and CNNs holds promise in revolutionizing disease diagnosis and treatment.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of ini...Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy numbers as PCR products are generated. This technique significantly simplifies and accelerates the process of producing reproducible quantification of nucleic acid molecules. It not only is a sensitive, accurate and rapid quantitative method, but it also provides an easier way to calculate the absolute starting copy number of nucleic acid molecules to be tested. Together with molecular bio-techniques, like microarray, real-time PCR will play a very important role in many aspects of molecular life science such as functional gene analysis and disease molecular diagnostics. This review introduces the detailed principles and application of the real-time PCR technique, describes a recently developed system for exact quantification of AUX/IAA genes In Arabidopsis, and discusses the problems with the real-time PCR process.展开更多
AIM:To investigate precore/basal core promoter(PC/BCP) mutants throughout hepatitis B virus(HBV) infection and to determine their relationship to hepatitis B early antigen(HBeA g) titers.METHODS:We enrolled 191 patien...AIM:To investigate precore/basal core promoter(PC/BCP) mutants throughout hepatitis B virus(HBV) infection and to determine their relationship to hepatitis B early antigen(HBeA g) titers.METHODS:We enrolled 191 patients in various stages of HBV infection at the Huashan Hospital and the Taizhou Municipal Hospital from 2010 to 2012.None of the patients received antiviral therapy.HBV DNA from serum,was quantified by real-time PCR.The HBV genotype was determined by direct sequencing of the S gene.We used the Simpleprobe ultrasensitivequantitative method to detect PC/BCP mutants in each patient.We compared the strain number,percentage,and the changes in PC/BCP mutants in different phases,and analyzed the relationship between PC/BCP mutants and HBe Ag by multiple linear regression and logistic regression.RESULTS:Patients with HBV infection(n = 191) were assigned to groups by phase:Immune tolerance(IT) = 55,Immune clearance(IC) = 67,Low-replicative(LR) = 49,and HBeA g-negative hepatitis(ENH) = 20.Of the patients(male,112; female,79) enrolled,122 were HBe Ag-positive and 69 were HBe Ag-negative.The median age was 33 years(range:18-78 years).PC and BCP mutation detection rates were 84.82%(162/191) and 96.86%(185/191),respectively.In five HBe Ag-negative cases,we detected double mutation G1896A/G1899 A.The logarithm value of PC mutant quantities(log10 PC) significantly differed in IT,IC,and LR phases,as well as in the ENH phase(F = 49.350,P < 0.001).The logarithm value of BCP mutant quantities(log10 BCP) also differed during the four phases(F = 25.530,P < 0.001).Log10 PC and log10 BCP values were high in the IT and IC phases,decreased in the LR phase,and increased in the ENH phase,although the absolute value at this point remained lower than that in the IT and IC phases.PC mutant quantity per total viral load(PC%) and BCP mutant quantity per total viral load(BCP%) differed between phases(F = 20.040,P < 0.001; F = 10.830,P < 0.001),with PC% and BCP% gradually increasing in successive phases.HBeA g titers negatively correlated with PC%(Spearman's rho =-0.354,P < 0.001) and BCP%(Spearman's rho =-0.395,P < 0.001).The negative correlation between PC% and HBeA g status was significant(B =-5.281,P = 0.001),but there was no such correlation between BCP% and HBeA g status(B =-0.523,P = 0.552).CONCLUSION:PC/BCP mutants become predominant in a dynamic and continuous process.Log10 PC,log10 BCP,PC% and BCP% might be combined to evaluate disease progression.PC% determines HBeA g status.展开更多
The quantificational and normative design is the precondition of improving the design of copper staves for blast furnaces. Based on a 3-dimensional temperature field calculation model, from the view point of heat tran...The quantificational and normative design is the precondition of improving the design of copper staves for blast furnaces. Based on a 3-dimensional temperature field calculation model, from the view point of heat transfer and long campaigns note with the core of forming accretion, the forming-accretion-ability (FAA) and the rib hot surface maximum temperature difference (ATmax) as quantificational indexes to direct and evaluate the design of copper staves for blast furnaces were presented. The application of the two indexes in design essentially embodies the new long campaigns in the stage of design. With the application of the two indexes, good results can be obtained. Firstly, it was suggested that the rib height of a copper stave can be reduced to 15 mm, which is a new method and theory for the reduction of copper staves. Secondly, the influence of insert on FAA and ATmax, is decided by the volume of insert. According to this, the principle of design for the hot surface geometry of copper staves was put forward that the ratio of the rib hot surface to the copper stave hot surface (abbreviated as the ratio of rib to stave) must be maintained in the range of 45% to 55%; for the present copper stave with a 35-40 mm thick rib, the ratio of rib to stave in the range of 50% to 55% can optimize the design of copper staves; for the copper stave with a smaller rib thickness, for example 15 ram, the ratio of rib to stave in the range of 45% to 50% can optimize the design of copper staves. It can be summarized that the thicker the rib thickness, the larger is the ratio of rib to stave. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
BACKGROUND Diabetic kidney disease(DKD)is a common complication of diabetes.The patient’s prognosis is poor once DKD progresses to advanced stage.Accurate diagnosis and timely treatment of early DKD are important for...BACKGROUND Diabetic kidney disease(DKD)is a common complication of diabetes.The patient’s prognosis is poor once DKD progresses to advanced stage.Accurate diagnosis and timely treatment of early DKD are important for improving patient’s prognosis and reducing mortality.AIM To explore the value of elastography point quantification(ElastPQ)in improving the accuracy of early DKD diagnosis.METHODS A total of 69 patients with type 2 diabetes were recruited from Naval Military Medical University Affiliated Gongli Hospital.Patients were divided into early DKD group and medium DKD group according to pathological results and urinary albumin excretion rate(UAER).Another 40 patients with simple diabetes were included as the diabetes group.The baseline data,laboratory diagnostic indicators,and ultrasound indicators for each patient were recorded.The differences of the indicators in the three groups were compared.Multivariate logistic regression was used to analyze the influencing factors of the development from simple diabetes into early DKD and from early DKD into medium DKD.Receiver operating characteristic analyses of potential indicators in identifying early DKD and medium DKD,and early DKD and simple diabetes were established.RESULTS Multivariate logistic regression analysis showed that UAER(P<0.001),renocortical Young's Modulus(YM)(P<0.001),and renal parenchymal thickness(P=0.013)were the independent influencing factors of the development from early DKD into medium DKD.Diabetes duration(P=0.041),UAER(P=0.034),and renocortical YM(P=0.017)were the independent influencing factors of the development from simple diabetes into early DKD.Receiver operating characteristic analysis indicated that UAER,renocortical YM,and renal parenchymal thickness were accurate in identifying early DKD and medium DKD[all area under curve(AUC)>0.9].The accuracy of UAER(AUC=0.744),diabetes duration(AUC=0.757),and renocortical YM(AUC=0.782)for the diagnosis of early DKD and simple diabetes were limited.However,the combined diagnosis of UAER,diabetes duration,and renocortical YM was accurate in identifying early DKD and simple diabetes(AUC=0.906),which was significantly higher than any of the three indicators(all P<0.05).CONCLUSION ElastPQ is of great value in the diagnosis of early DKD.When combined with the diabetes duration and UAER,it is expected to diagnose accurately early DKD.展开更多
Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is m...Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.展开更多
As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-...As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.展开更多
Poly(lactide-co-glycolide acid)(PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used mate...Poly(lactide-co-glycolide acid)(PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used materials for drug delivery and biomedical systems, also being present in several US Food and Drug Administration-approved carrier systems and therapeutic devices. For both applications, the quantification of the polymer is inalienable. During the development of a production process, parameters like yield or loading efficacy are essential to be determined. Although PLGA is a well-defined biomaterial,it still lacks a sensitive and convenient quantification approach for PLGA-based systems. Thus, we present a novel method for the fast and precise quantification of PLGA by RP-HPLC. The polymer is hydrolyzed into its monomers, glycolic acid and lactic acid. Afterwards, the monomers are derivatized with the absorption-enhancing molecule 2,4′-dibromoacetophenone. Furthermore, the wavelength of the derivatized monomers is shifted to higher wavelengths, where the used solvents show a lower absorption,increasing the sensitivity and detectability. The developed method has a detection limit of 0.1 mg/mL,enabling the quantification of low amounts of PLGA. By quantifying both monomers separately, information about the PLGA monomer ratio can be also directly obtained, being relevant for degradation behavior. Compared to existing approaches, like gravimetric or nuclear magnetic resonance measurements, which are tedious or expensive, the developed method is fast, ideal for routine screening, and it is selective since no stabilizer or excipient is interfering. Due to the high sensitivity and rapidity of the method, it is suitable for both laboratory and industrial uses.展开更多
AIM:To compare the predictive value of three methods of epicardial fat(EF) assessment for presence of significant coronary artery disease(CAD) [i.e.,epicardial fat volume(EFV),EFV indexed with body surface area(EFV/BS...AIM:To compare the predictive value of three methods of epicardial fat(EF) assessment for presence of significant coronary artery disease(CAD) [i.e.,epicardial fat volume(EFV),EFV indexed with body surface area(EFV/BSA) and EFV indexed with body mass index(EFV/BMI)].METHODS:The study was performed on 170 patients(85 women and 85 men) with clinical suspicion of CAD.They aged 26-89 years with a median age of 54 years.The patients were classified into three groups:Group 1:58 patients with normal coronary arteries; group 2:48 patients with non-significant CAD and group 3:64 patients with significant CAD.The three methods for assessment of epicardial fat were retrospectively studied to determine the best method to predict the presence of significant CAD.RESULTS:The three methods for epicardial fat quantification and measurements,i.e.,EFV,EFV/BSA and EFV/BMI with post- hoc analysis showed a significant difference between patients with significant coronary artery disease compared to the normal group.Receiver operating characteristic curve analysis showed no significant difference between the three methods of epicardial fat measurements,the area under curve ranging between 0.6 and 0.62.The optimal cut-off was 80.3 cm3 for EFV,2.4 cm3/m2 for EFV indexed with BMI and 41.7 cm3/(kg/m2) for EFV indexed with BSA.For this cut-off the sensitivity ranged between 0.92 and 0.94,while specificity varied from 0.31 to 0.35.CONCLUSION:Any one of the three methods for assessment of epicardial fat can be used to predict significant CAD since all have the same equivalent predictive value.展开更多
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
文摘Short-chain fatty acids (SCFA) play an important role in human biochemistry. They originate primarily from the digestive system through carbohydrates microbial fermentation. Most SCFA produced in the colon are absorbed by the intestinal wall and enter the bloodstream to be distributed throughout the body for multiple purposes. At the intestinal level, SCFA play a role in controlling fat storage and fatty acid metabolism. The effects of these beneficial compounds therefore concern overall health. They facilitate energy expenditure and are valuable allies in the fight against obesity and diabetes. SCFA are also involved in the regulation of the levels of several neurotransmitters such as GABA (γ-aminobutyric acid), glutamate, serotonin, dopamine, and norepinephrine. Their role is also highlighted in many inflammatory and neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s disease (PD). To have a realistic picture of the distribution of SCFA in different biological compartments of the human body, we propose to study SCFA simultaneously in five human biological samples: feces, saliva, serum, cerebrospinal fluid (CSF), and urine, as well as in Dried Blood Spot (DBS). To evaluate their concentration and repeatability, we used 10 aliquots from pooled samples, analyzed by 3-nitrophenylhydrazine (3-NPH) derivation and liquid chromatography coupled with high sensitivity mass spectrometry (LC-QqQ-MS). We also evaluated the SCFA assay on Dried Blood Spot (DBS). In this work, we adapted the pre-analytical parts for each sample to be able to use a common calibration curve, thus facilitating multi-assay quantification studies and so being less time-consuming. Moreover, we proposed new daughter ions from the same neutral loss (43 Da) to quantify SCFAs, thus improving the sensitivity. In conclusion, our methodology, based on a unique calibration curve for all samples for each SCFA, is well-suited to quantified them in a clinical context.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金the National Natural Science Foundation of China(Nos.51988101 and 42007262).
文摘3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
基金supported by Shandong Provincial Natural Science Foundation (grant number: ZR2023MD036)Key Research and Development Project in Shandong Province (grant number: 2019GGX101064)project for excellent youth foundation of the innovation teacher team, Shandong (grant number: 2022KJ310)。
文摘The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.
文摘Artificial intelligence(AI),particularly machine learning(ML)and deep learning(DL)techniques,such as convolutional neural networks(CNNs),have emerged as transformative technologies with vast potential in healthcare.Body iron load is usually assessed using slightly invasive blood tests(serum ferritin,serum iron,and serum transferrin).Serum ferritin is widely used to assess body iron and drive medical management;however,it is an acute phase reactant protein offering wrong interpretation in the setting of inflammation and distressed patients.Magnetic resonance imaging is a non-invasive technique that can be used to assess liver iron.The ML and DL algorithms can be used to enhance the detection of minor changes.However,a lack of open-access datasets may delay the advancement of medical research in this field.In this letter,we highlight the importance of standardized datasets for advancing AI and CNNs in medical imaging.Despite the current limitations,embracing AI and CNNs holds promise in revolutionizing disease diagnosis and treatment.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
文摘Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy numbers as PCR products are generated. This technique significantly simplifies and accelerates the process of producing reproducible quantification of nucleic acid molecules. It not only is a sensitive, accurate and rapid quantitative method, but it also provides an easier way to calculate the absolute starting copy number of nucleic acid molecules to be tested. Together with molecular bio-techniques, like microarray, real-time PCR will play a very important role in many aspects of molecular life science such as functional gene analysis and disease molecular diagnostics. This review introduces the detailed principles and application of the real-time PCR technique, describes a recently developed system for exact quantification of AUX/IAA genes In Arabidopsis, and discusses the problems with the real-time PCR process.
基金Supported by National Science and Technology Major Project of China,No.2012ZX10002007-001-002 and No.2013ZX10002001(to Zhang JM)the National Natural Science Foundation of China,No.81271833 and No.81471933(to Zhang JM)+1 种基金the Science and Technology Plan Project of Taizhou,Zhejiang province,No.1402ky19(to Tu WH and Hou W)the Scientific Research Project of Taizhou University,Zhejiang province,No:2014PY054(to Tu WH and Hou W)
文摘AIM:To investigate precore/basal core promoter(PC/BCP) mutants throughout hepatitis B virus(HBV) infection and to determine their relationship to hepatitis B early antigen(HBeA g) titers.METHODS:We enrolled 191 patients in various stages of HBV infection at the Huashan Hospital and the Taizhou Municipal Hospital from 2010 to 2012.None of the patients received antiviral therapy.HBV DNA from serum,was quantified by real-time PCR.The HBV genotype was determined by direct sequencing of the S gene.We used the Simpleprobe ultrasensitivequantitative method to detect PC/BCP mutants in each patient.We compared the strain number,percentage,and the changes in PC/BCP mutants in different phases,and analyzed the relationship between PC/BCP mutants and HBe Ag by multiple linear regression and logistic regression.RESULTS:Patients with HBV infection(n = 191) were assigned to groups by phase:Immune tolerance(IT) = 55,Immune clearance(IC) = 67,Low-replicative(LR) = 49,and HBeA g-negative hepatitis(ENH) = 20.Of the patients(male,112; female,79) enrolled,122 were HBe Ag-positive and 69 were HBe Ag-negative.The median age was 33 years(range:18-78 years).PC and BCP mutation detection rates were 84.82%(162/191) and 96.86%(185/191),respectively.In five HBe Ag-negative cases,we detected double mutation G1896A/G1899 A.The logarithm value of PC mutant quantities(log10 PC) significantly differed in IT,IC,and LR phases,as well as in the ENH phase(F = 49.350,P < 0.001).The logarithm value of BCP mutant quantities(log10 BCP) also differed during the four phases(F = 25.530,P < 0.001).Log10 PC and log10 BCP values were high in the IT and IC phases,decreased in the LR phase,and increased in the ENH phase,although the absolute value at this point remained lower than that in the IT and IC phases.PC mutant quantity per total viral load(PC%) and BCP mutant quantity per total viral load(BCP%) differed between phases(F = 20.040,P < 0.001; F = 10.830,P < 0.001),with PC% and BCP% gradually increasing in successive phases.HBeA g titers negatively correlated with PC%(Spearman's rho =-0.354,P < 0.001) and BCP%(Spearman's rho =-0.395,P < 0.001).The negative correlation between PC% and HBeA g status was significant(B =-5.281,P = 0.001),but there was no such correlation between BCP% and HBeA g status(B =-0.523,P = 0.552).CONCLUSION:PC/BCP mutants become predominant in a dynamic and continuous process.Log10 PC,log10 BCP,PC% and BCP% might be combined to evaluate disease progression.PC% determines HBeA g status.
基金the National Natural Science Foundation of China(No.60672145).
文摘The quantificational and normative design is the precondition of improving the design of copper staves for blast furnaces. Based on a 3-dimensional temperature field calculation model, from the view point of heat transfer and long campaigns note with the core of forming accretion, the forming-accretion-ability (FAA) and the rib hot surface maximum temperature difference (ATmax) as quantificational indexes to direct and evaluate the design of copper staves for blast furnaces were presented. The application of the two indexes in design essentially embodies the new long campaigns in the stage of design. With the application of the two indexes, good results can be obtained. Firstly, it was suggested that the rib height of a copper stave can be reduced to 15 mm, which is a new method and theory for the reduction of copper staves. Secondly, the influence of insert on FAA and ATmax, is decided by the volume of insert. According to this, the principle of design for the hot surface geometry of copper staves was put forward that the ratio of the rib hot surface to the copper stave hot surface (abbreviated as the ratio of rib to stave) must be maintained in the range of 45% to 55%; for the present copper stave with a 35-40 mm thick rib, the ratio of rib to stave in the range of 50% to 55% can optimize the design of copper staves; for the copper stave with a smaller rib thickness, for example 15 ram, the ratio of rib to stave in the range of 45% to 50% can optimize the design of copper staves. It can be summarized that the thicker the rib thickness, the larger is the ratio of rib to stave. 2008 University of Science and Technology Beijing. All rights reserved.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金Shanghai Health and Family Planning Commission,No.201440051Shanghai Pudong New Area Health and Family Planning Commission,No.PW2016A-19
文摘BACKGROUND Diabetic kidney disease(DKD)is a common complication of diabetes.The patient’s prognosis is poor once DKD progresses to advanced stage.Accurate diagnosis and timely treatment of early DKD are important for improving patient’s prognosis and reducing mortality.AIM To explore the value of elastography point quantification(ElastPQ)in improving the accuracy of early DKD diagnosis.METHODS A total of 69 patients with type 2 diabetes were recruited from Naval Military Medical University Affiliated Gongli Hospital.Patients were divided into early DKD group and medium DKD group according to pathological results and urinary albumin excretion rate(UAER).Another 40 patients with simple diabetes were included as the diabetes group.The baseline data,laboratory diagnostic indicators,and ultrasound indicators for each patient were recorded.The differences of the indicators in the three groups were compared.Multivariate logistic regression was used to analyze the influencing factors of the development from simple diabetes into early DKD and from early DKD into medium DKD.Receiver operating characteristic analyses of potential indicators in identifying early DKD and medium DKD,and early DKD and simple diabetes were established.RESULTS Multivariate logistic regression analysis showed that UAER(P<0.001),renocortical Young's Modulus(YM)(P<0.001),and renal parenchymal thickness(P=0.013)were the independent influencing factors of the development from early DKD into medium DKD.Diabetes duration(P=0.041),UAER(P=0.034),and renocortical YM(P=0.017)were the independent influencing factors of the development from simple diabetes into early DKD.Receiver operating characteristic analysis indicated that UAER,renocortical YM,and renal parenchymal thickness were accurate in identifying early DKD and medium DKD[all area under curve(AUC)>0.9].The accuracy of UAER(AUC=0.744),diabetes duration(AUC=0.757),and renocortical YM(AUC=0.782)for the diagnosis of early DKD and simple diabetes were limited.However,the combined diagnosis of UAER,diabetes duration,and renocortical YM was accurate in identifying early DKD and simple diabetes(AUC=0.906),which was significantly higher than any of the three indicators(all P<0.05).CONCLUSION ElastPQ is of great value in the diagnosis of early DKD.When combined with the diabetes duration and UAER,it is expected to diagnose accurately early DKD.
基金The research was supported by the Notion's Fifteenth Scientific and Technological Breakthrough Project: Research of Vector and Mountain Seismic Exploration (No.2001BA605A-12).
文摘Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.
基金supported by the Advanced Research of National Defense Foundation of China(426010501)
文摘As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method.
文摘Poly(lactide-co-glycolide acid)(PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used materials for drug delivery and biomedical systems, also being present in several US Food and Drug Administration-approved carrier systems and therapeutic devices. For both applications, the quantification of the polymer is inalienable. During the development of a production process, parameters like yield or loading efficacy are essential to be determined. Although PLGA is a well-defined biomaterial,it still lacks a sensitive and convenient quantification approach for PLGA-based systems. Thus, we present a novel method for the fast and precise quantification of PLGA by RP-HPLC. The polymer is hydrolyzed into its monomers, glycolic acid and lactic acid. Afterwards, the monomers are derivatized with the absorption-enhancing molecule 2,4′-dibromoacetophenone. Furthermore, the wavelength of the derivatized monomers is shifted to higher wavelengths, where the used solvents show a lower absorption,increasing the sensitivity and detectability. The developed method has a detection limit of 0.1 mg/mL,enabling the quantification of low amounts of PLGA. By quantifying both monomers separately, information about the PLGA monomer ratio can be also directly obtained, being relevant for degradation behavior. Compared to existing approaches, like gravimetric or nuclear magnetic resonance measurements, which are tedious or expensive, the developed method is fast, ideal for routine screening, and it is selective since no stabilizer or excipient is interfering. Due to the high sensitivity and rapidity of the method, it is suitable for both laboratory and industrial uses.
文摘AIM:To compare the predictive value of three methods of epicardial fat(EF) assessment for presence of significant coronary artery disease(CAD) [i.e.,epicardial fat volume(EFV),EFV indexed with body surface area(EFV/BSA) and EFV indexed with body mass index(EFV/BMI)].METHODS:The study was performed on 170 patients(85 women and 85 men) with clinical suspicion of CAD.They aged 26-89 years with a median age of 54 years.The patients were classified into three groups:Group 1:58 patients with normal coronary arteries; group 2:48 patients with non-significant CAD and group 3:64 patients with significant CAD.The three methods for assessment of epicardial fat were retrospectively studied to determine the best method to predict the presence of significant CAD.RESULTS:The three methods for epicardial fat quantification and measurements,i.e.,EFV,EFV/BSA and EFV/BMI with post- hoc analysis showed a significant difference between patients with significant coronary artery disease compared to the normal group.Receiver operating characteristic curve analysis showed no significant difference between the three methods of epicardial fat measurements,the area under curve ranging between 0.6 and 0.62.The optimal cut-off was 80.3 cm3 for EFV,2.4 cm3/m2 for EFV indexed with BMI and 41.7 cm3/(kg/m2) for EFV indexed with BSA.For this cut-off the sensitivity ranged between 0.92 and 0.94,while specificity varied from 0.31 to 0.35.CONCLUSION:Any one of the three methods for assessment of epicardial fat can be used to predict significant CAD since all have the same equivalent predictive value.