期刊文献+
共找到2,617篇文章
< 1 2 131 >
每页显示 20 50 100
Research on Modulation Signal Denoising Method Based on Improved Variational Mode Decomposition
1
作者 Canyu Mo Qianqiang Lin +1 位作者 Yuanduo Niu Haoran Du 《Journal of Electronic Research and Application》 2024年第1期7-15,共9页
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi... In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance. 展开更多
关键词 Micro-motion modulation signal Variational mode decomposition Genetic algorithm Adaptive optimization
下载PDF
Analysis of Aluminum Alloy Double-Pulse MIG Welding Arc Signal Characteristics Based on Broadband Mode Decomposition
2
作者 Yin Si Zixiong Xia +2 位作者 Wei Liu Kexin Zhang Xiangyu Song 《Journal of Electronic Research and Application》 2024年第4期7-16,共10页
Welding voltage and current in arc signals are directly related to arc stability and welding quality.Process experiments with different parameters were organized according to the orthogonal experimental design method ... Welding voltage and current in arc signals are directly related to arc stability and welding quality.Process experiments with different parameters were organized according to the orthogonal experimental design method by constructing an aluminum alloy double-pulse metal inert gas(MIG)welding arc electric signal test platform.The data acquisition system of the aluminum alloy MIG welding process was established to obtain real-time arc signal information reflecting the welding process.The aluminum alloy’s collected double-pulse arc current signals are decomposed adaptively by broadband mode decomposition(BMD).The direct current(DC)signal,pulse signal,distortion signal,ripple signal,and noise signal are separated and extracted,and the composite multiscale fuzzy entropy(CMFE)is calculated for the component set of the electrical signal.The experimental results show that the current waveform obtained by the double-pulse MIG welding current signal is consistent with the corresponding weld forming diagram.Simultaneously,the composite multiscale fuzzy entropy is calculated for the arc characteristic parameters.The rationality of matching process parameters and arc stability of aluminum alloy’s double-pulse MIG welding were evaluated. 展开更多
关键词 Double-pulse MIG welding Electric arc signal Broadband mode decomposition Welding stability
下载PDF
SRMD:Sparse Random Mode Decomposition
3
作者 Nicholas Richardson Hayden Schaeffer Giang Tran 《Communications on Applied Mathematics and Computation》 EI 2024年第2期879-906,共28页
Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the... Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods. 展开更多
关键词 Sparse random features signal decomposition Short-time Fourier transform
下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
4
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform Wavelet Packet decomposition Time-Frequency Analysis Non-Stationary signals
下载PDF
Variational Mode Decomposition-Informed Empirical Wavelet Transform for Electric Vibrator Noise Analysis
5
作者 Zhenyu Xu Zhangwei Chen 《Journal of Applied Mathematics and Physics》 2024年第6期2320-2332,共13页
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition... Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method. 展开更多
关键词 Electric Vibrator Noise Analysis signal Decomposing Variational Mode decomposition Empirical Wavelet Transform
下载PDF
Underwater acoustic signal denoising model based on secondary variational mode decomposition
6
作者 Hong Yang Wen-shuai Shi Guo-hui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期87-110,共24页
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ... Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value. 展开更多
关键词 Underwater acoustic signal DENOISING Variational mode decomposition Secondary decomposition Fluctuation-based dispersion entropy Cosine similarity
下载PDF
IMPROVED SINGULAR VALUE DECOMPOSITION TECHNIQUE FOR DETECTING AND EXTRACTING PERIODIC IMPULSE COMPONENT IN A VIBRATION SIGNAL 被引量:15
7
作者 LiuHongxing LiJian +1 位作者 ZhaoYing QuLiangsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期340-345,共6页
Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, ... Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible. 展开更多
关键词 Fault diagnosis VIBRATION signal processing Singular value decomposition
下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
8
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter MULTI-SCALE CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
下载PDF
Variational Mode Decomposition for Rotating Machinery Condition Monitoring Using Vibration Signals 被引量:3
9
作者 Muhd Firdaus Isham Muhd Salman Leong +1 位作者 Meng Hee Lim Zair Asrar Ahmad 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期38-50,共13页
The failure of rotating machinery applications has major time and cost effects on the industry.Condition monitoring helps to ensure safe operation and also avoids losses.The signal processing method is essential for e... The failure of rotating machinery applications has major time and cost effects on the industry.Condition monitoring helps to ensure safe operation and also avoids losses.The signal processing method is essential for ensuring both the efficiency and accuracy of the monitoring process.Variational mode decomposition(VMD)is a signal processing method which decomposes a non-stationary signal into sets of variational mode functions(VMFs)adaptively and non-recursively.The VMD method offers improved performance for the condition monitoring of rotating machinery applications.However,determining an accurate number of modes for the VMD method is still considered an open research problem.Therefore,a selection method for determining the number of modes for VMD is proposed by taking advantage of the similarities in concept between the original signal and VMF.Simulated signal and online gearbox vibration signals have been used to validate the performance of the proposed method.The statistical parameters of the signals are extracted from the original signals,VMFs and intrinsic mode functions(IMFs)and have been fed into machine learning algorithms to validate the performance of the VMD method.The results show that the features extracted from VMD are both superior and accurate for the monitoring of rotating machinery.Hence the proposed method offers a new approach for the condition monitoring of rotating machinery applications. 展开更多
关键词 VARIATIONAL MODE decomposition(VMD) monitoring diagnosis vibration signal MODE NUMBER GEAR
下载PDF
Microseismic signal denoising by combining variational mode decomposition with permutation entropy 被引量:5
10
作者 Zhang Xing-Li Cao Lian-Yue +2 位作者 Chen Yan Jia Rui-Sheng Lu Xin-Ming 《Applied Geophysics》 SCIE CSCD 2022年第1期65-80,144,145,共18页
Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the ef... Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field. 展开更多
关键词 DENOISING Microseismic signal Permutation entropy Variational mode decomposition
下载PDF
HARMONIC COMPONENT EXTRACTION FROM A CHAOTIC SIGNAL BASED ON EMPIRICAL MODE DECOMPOSITION METHOD 被引量:1
11
作者 李鸿光 孟光 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第2期221-225,共5页
A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed... A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed of a series of the simple intrinsic modes, the harmonic components were extracted f^om the chaotic signals. Simulation results show the approach is satisfactory. 展开更多
关键词 chaotic signal signal processing empirical mode decomposition(EMD) Duffing function
下载PDF
A Novel Multichannel Audio Signal Compression Method Based on Tensor Representation and Decomposition 被引量:2
12
作者 WANG Jing XIE Xiang KUANG Jingming 《China Communications》 SCIE CSCD 2014年第3期80-90,共11页
Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.Th... Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.The multichannel audio is represented with 3-order tensor space and is decomposed into core tensor with three factor matrices in the way of channel,time and frequency.Only the truncated core tensor is transmitted which will be multiplied by the pre-trained factor matrices to reconstruct the original tensor space.Objective and subjective experiments have been done to show a very noticeable compression capability with an acceptable output quality.The novelty of the proposed compression method is that it enables both high compression capability and backward compatibility with limited signal distortion to the hearing. 展开更多
关键词 multichannel audio signal compression tensor decomposition Tuckermodel core tensor
下载PDF
Features of energy distribution for blast vibration signals based on wavelet packet decomposition 被引量:4
13
作者 LING Tong-hua LI Xi-bing DAI Ta-gen PENG Zhen-bin 《Journal of Central South University of Technology》 2005年第z1期135-140,共6页
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non... Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria. 展开更多
关键词 BLASTING vibration NON-STATIONARY RANDOM signal energy distribution WAVELET TRANSFORM WAVELET PACKET decomposition
下载PDF
Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating 被引量:1
14
作者 王文波 张晓东 +4 位作者 常毓禅 汪祥莉 王钊 陈希 郑雷 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期400-406,共7页
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a... In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. 展开更多
关键词 independent component analysis empirical mode decomposition chaotic signal DENOISING
下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
15
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
下载PDF
Chirplet Signal and Empirical Mode Decompositions of Ultrasonic Signals for Echo Detection and Estimation 被引量:1
16
作者 Yufeng Lu Erdal Oruklu Jafar Saniie 《Journal of Signal and Information Processing》 2013年第2期149-157,共9页
In this study, the performance of chirplet signal decomposition (CSD) and empirical mode decomposition (EMD) coupled with Hilbert spectrum have been evaluated and compared for ultrasonic imaging applications. Numerica... In this study, the performance of chirplet signal decomposition (CSD) and empirical mode decomposition (EMD) coupled with Hilbert spectrum have been evaluated and compared for ultrasonic imaging applications. Numerical and experimental results indicate that both the EMD and CSD are able to decompose sparsely distributed chirplets from noise. In case of signals consisting of multiple interfering chirplets, the CSD algorithm, based on successive search for estimating optimal chirplet parameters, outperforms the EMD algorithm which estimates a series of intrinsic mode functions (IMFs). In particular, we have utilized the EMD as a signal conditioning method for Hilbert time-frequency representation in order to estimate the arrival time and center frequency of chirplets in order to quantify the ultrasonic signals. Experimental results clearly exhibit that the combined EMD and CSD is an effective processing tools to analyze ultrasonic signals for target detection and pattern recognition. 展开更多
关键词 Ultrasound HILBERT TIME-FREQUENCY Representation Empirical Mode decomposition CHIRPLET signal decomposition Detection ESTIMATION
下载PDF
Adaptive Variational Mode Decomposition for Bearing Fault Detection
17
作者 Xing Xing Ming Zhang Wilson Wang 《Journal of Signal and Information Processing》 2023年第2期9-24,共16页
Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable beari... Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable bearing fault detection still remains a challenging task, especially in industrial applications. The objective of this work is to propose an adaptive variational mode decomposition (AVMD) technique for non-stationary signal analysis and bearing fault detection. The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis index is suggested to decompose the target signal and select the most representative intrinsic mode functions (IMFs). 3) The envelope spectrum analysis is performed using the selected IMFs to identify the characteristic features for bearing fault detection. The effectiveness of the proposed AVMD technique is examined by experimental tests under different bearing conditions, with the comparison of other related bearing fault techniques. 展开更多
关键词 Bearing Fault Detection Vibration signal Analysis Intrinsic Mode Functions Variational Mode decomposition
下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
18
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal DENOISING wavelet threshold denoising black widow optimization algorithm
下载PDF
A NEW TWO-DIMENSIONAL SIGNAL DECOMPOSITION SCHEME USING THE EXTREME-LIFTING SCHEME
19
作者 Liu Baofang Ping Xijian Deng Guanglin Shao Meizhen(Dept. of Info. Sci., University of Information Engineering, Zhengzhou 450002)(P.O.Box 1965, Beijing 100091) 《Journal of Electronics(China)》 2001年第2期105-112,共8页
This paper discusses the signal decomposition method using the extreme-lifting scheme and two two-dimensional decomposition schemes: separable one-dimensional scheme and two-dimensional scheme with quincunx sampling. ... This paper discusses the signal decomposition method using the extreme-lifting scheme and two two-dimensional decomposition schemes: separable one-dimensional scheme and two-dimensional scheme with quincunx sampling. The structure of the relation "~" between Ex and Ey of these two schemes is symmetrical and both these two schemes have shortcomings)An unsymmetrical scheme of the extreme-lifting scheme is proposed in this paper, which canbe directly used to decompose two-dimensional image and can get better decomposition result than the two schemes with little computation cost. 展开更多
关键词 signal decomposition Min-lifting SCHEME Quincunx sampling LIFTING SCHEME
下载PDF
Chaotic signal denoising algorithm based on sparse decomposition
20
作者 Jin-Wang Huang Shan-Xiang Lv +1 位作者 Zu-Sheng Zhang Hua-Qiang Yuan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期133-138,共6页
Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristic... Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics.We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition(K-SVD)optimization.The observed signal is divided into segments and decomposed sparsely.The over-complete atomic library is constructed according to the differential equation of chaotic signals.The orthogonal matching pursuit algorithm is used to search the optimal matching atom.The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD.The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics. 展开更多
关键词 sparse decomposition DENOISING K-SVD chaotic signal
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部