The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b...The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.展开更多
This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, catego...This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, categorized by their discipline, schooling background, internet usage, and information retrieval preferences. Key findings indicate that females are more likely to plan their searches in advance and prefer structured methods of information retrieval, such as using library portals and leading university websites. Males, however, tend to use web search engines and self-archiving methods more frequently. This analysis provides valuable insights for educational institutions and libraries to optimize their resources and services based on user behavior patterns.展开更多
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di...Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.展开更多
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem...This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.展开更多
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me...Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.展开更多
With the development of information technology,the online retrieval of remote electronic data has become an important method for investigative agencies to collect evidence.In the current normative documents,the online...With the development of information technology,the online retrieval of remote electronic data has become an important method for investigative agencies to collect evidence.In the current normative documents,the online retrieval of electronic data is positioned as a new type of arbitrary investigative measure.However,study of its actual operation has found that the online retrieval of electronic data does not fully comply with the characteristics of arbitrary investigative measures.The root cause is its inaccurately defined nature due to analogy errors,an emphasis on the authenticity of electronic data at the cost of rights protection,insufficient effectiveness of normative documents to break through the boundaries of law,and superficial inconsistency found in the mechanical comparison with the nature of existing investigative measures causes.The nature of electronic data retrieved online should be defined according to different circumstances.The retrieval of electronic data disclosed on the Internet is an arbitrary investigative measure,and following procedural specifications should be sufficient.When investigators conceal their true identities and enter the cyberspace of the suspected crime through a registered account to extract dynamic electronic data for criminal activities,it is essentially a covert investigation in cyberspace,and they should follow the normative requirements for covert investigations.The retrieval of dynamic electronic data from private spaces is a technical investigative measure and should be implemented in accordance with the technical investigative procedures.Retrieval of remote“non-public electronic data involving privacy”is a mandatory investigative measure,and is essentially a search in the virtual space.Therefore,procedural specifications should be set in accordance with the standards of searching.展开更多
Video-text retrieval (VTR) is an essential task in multimodal learning, aiming to bridge the semantic gap between visual and textual data. Effective video frame sampling plays a crucial role in improving retrieval per...Video-text retrieval (VTR) is an essential task in multimodal learning, aiming to bridge the semantic gap between visual and textual data. Effective video frame sampling plays a crucial role in improving retrieval performance, as it determines the quality of the visual content representation. Traditional sampling methods, such as uniform sampling and optical flow-based techniques, often fail to capture the full semantic range of videos, leading to redundancy and inefficiencies. In this work, we propose CLIP4Video-Sampling: Global Semantics-Guided Multi-Granularity Frame Sampling for Video-Text Retrieval, a global semantics-guided multi-granularity frame sampling strategy designed to optimize both computational efficiency and retrieval accuracy. By integrating multi-scale global and local temporal sampling and leveraging the CLIP (Contrastive Language-Image Pre-training) model’s powerful feature extraction capabilities, our method significantly outperforms existing approaches in both zero-shot and fine-tuned video-text retrieval tasks on popular datasets. CLIP4Video-Sampling reduces redundancy, ensures keyframe coverage, and serves as an adaptable pre-processing module for multimodal models.展开更多
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
Deep learning has transformed computational imaging,but traditional pixel-based representations limit their ability to capture continuous multiscale object features.Addressing this gap,we introduce a local conditional...Deep learning has transformed computational imaging,but traditional pixel-based representations limit their ability to capture continuous multiscale object features.Addressing this gap,we introduce a local conditional neural field(LCNF)framework,which leverages a continuous neural representation to provide flexible object representations.LCNF’s unique capabilities are demonstrated in solving the highly ill-posed phase retrieval problem of multiplexed Fourier ptychographic microscopy.Our network,termed neural phase retrieval(NeuPh),enables continuous-domain resolution-enhanced phase reconstruction,offering scalability,robustness,accuracy,and generalizability that outperform existing methods.NeuPh integrates a local conditional neural representation and a coordinate-based training strategy.We show that NeuPh can accurately reconstruct high-resolution phase images from low-resolution intensity measurements.Furthermore,NeuPh consistently applies continuous object priors and effectively eliminates various phase artifacts,demonstrating robustness even when trained on imperfect datasets.Moreover,NeuPh improves accuracy and generalization compared with existing deep learning models.We further investigate a hybrid training strategy combining both experimental and simulated datasets,elucidating the impact of domain shift between experiment and simulation.Our work underscores the potential of the LCNF framework in solving complex large-scale inverse problems,opening up new possibilities for deep-learning-based imaging techniques.展开更多
This article examines the implementation of a virtual health assistant powered by Retrieval-Augmented Generation (RAG) and GPT-4, aimed at enhancing clinical support through personalized, real-time interactions with p...This article examines the implementation of a virtual health assistant powered by Retrieval-Augmented Generation (RAG) and GPT-4, aimed at enhancing clinical support through personalized, real-time interactions with patients. The system is hypothesized to improve healthcare accessibility, operational efficiency, and patient outcomes by automating routine tasks and delivering accurate health information. The assistant leverages natural language processing and real-time data retrieval models to respond to patient inquiries, schedule appointments, provide medication reminders, assist with symptom triage, and answer insurance-related questions. By integrating RAG-based virtual care, the system reduces the burden on healthcare specialists and helps mitigate healthcare disparities, particularly in rural areas where traditional care is limited. Although the initial scope of testing did not validate all potential benefits, the results demonstrated high patient satisfaction and strong response accuracy, both critical for systems of this nature. These findings underscore the transformative potential of AI-driven virtual health assistants in enhancing patient engagement, streamlining operational workflows, and improving healthcare accessibility, ultimately contributing to better outcomes and more cost-effective care delivery.展开更多
[Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database ...[Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database management system and Structure Query Language.[Result] The system realized electronic management and retrieval of local plant information.The key words of retrieval included family,genus,formal name,Chinese name,Latin,morphological characteristics,habitat,collection people,collection places,and protect class and so on.[Conclusion] It provided reference for these problems of species identification and digital management of herbarium.展开更多
Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and re...Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and realized. The model is an extension of the traditional co-occurrence model by adding a decaying factor that decreases the mutual information when the distance between the terms increases. Experimental results on TREC-9 collections show this query expansion method results in significant improvements over the IR without query expansion.展开更多
A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a d...A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a document. Consequently, a formalized document framework is proposed. The document framework is used to express the meaning of a document with the concepts which are expressed by high semantic importance. The framework consists of two parts: the "domain" information and the "situation & background" information of a document. A document-extracting algorithm and a two-stage smoothing method are also proposed. The quantification of the similarity between the query and the document framework depends on the smoothing method. The experiments on the TREC6 collection demonstrate the feasibility and effectiveness of the proposed approach in information retrieval tasks. The average recall level precision of the model using the proposed approach is about 10% higher than that of traditional ones.展开更多
An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained ...An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.展开更多
Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information...Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information retrieval.展开更多
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net...The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.展开更多
The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for ea...The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for each DR operation. A recursion symmetry Hungarian method (RSHM), modified from the Hungarian method, is proposed for generating a DR operation sequence with minimal total travel time, in which symmetry marking is introduced to ensure a feasible solution and recursion is adopted to break the endless loop caused by the symmetry marking. Simulation experiments are conducted to evaluate the cost effectiveness and the performance of the proposed method. Experimental results illustrate that compared to the single-shuttle machine, the dual-shuttle machine can reduce more than 40% of the total travel time of retrieval operations, and the RSHM saves about 5% to 10% of the total travel time of retrieval operations compared to the greedy-based heuristic.展开更多
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ...In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.展开更多
基金supported by the National Natural Science of Foundation of China(41825011,42030608,42105128,and 42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,the CMA and the CMA Research Center on Meteorological Observation Engineering Technology(U2021Z03).
文摘The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.
文摘This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, categorized by their discipline, schooling background, internet usage, and information retrieval preferences. Key findings indicate that females are more likely to plan their searches in advance and prefer structured methods of information retrieval, such as using library portals and leading university websites. Males, however, tend to use web search engines and self-archiving methods more frequently. This analysis provides valuable insights for educational institutions and libraries to optimize their resources and services based on user behavior patterns.
文摘Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.
文摘This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
基金National Natural Science Foundation of China(No.61971121)。
文摘Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.
基金the phased research result of the Supreme People’s Procuratorate’s procuratorial theory research program“Research on the Governance Problems of the Crime of Aiding Information Network Criminal Activities”(Project Approval Number GJ2023D28)。
文摘With the development of information technology,the online retrieval of remote electronic data has become an important method for investigative agencies to collect evidence.In the current normative documents,the online retrieval of electronic data is positioned as a new type of arbitrary investigative measure.However,study of its actual operation has found that the online retrieval of electronic data does not fully comply with the characteristics of arbitrary investigative measures.The root cause is its inaccurately defined nature due to analogy errors,an emphasis on the authenticity of electronic data at the cost of rights protection,insufficient effectiveness of normative documents to break through the boundaries of law,and superficial inconsistency found in the mechanical comparison with the nature of existing investigative measures causes.The nature of electronic data retrieved online should be defined according to different circumstances.The retrieval of electronic data disclosed on the Internet is an arbitrary investigative measure,and following procedural specifications should be sufficient.When investigators conceal their true identities and enter the cyberspace of the suspected crime through a registered account to extract dynamic electronic data for criminal activities,it is essentially a covert investigation in cyberspace,and they should follow the normative requirements for covert investigations.The retrieval of dynamic electronic data from private spaces is a technical investigative measure and should be implemented in accordance with the technical investigative procedures.Retrieval of remote“non-public electronic data involving privacy”is a mandatory investigative measure,and is essentially a search in the virtual space.Therefore,procedural specifications should be set in accordance with the standards of searching.
文摘Video-text retrieval (VTR) is an essential task in multimodal learning, aiming to bridge the semantic gap between visual and textual data. Effective video frame sampling plays a crucial role in improving retrieval performance, as it determines the quality of the visual content representation. Traditional sampling methods, such as uniform sampling and optical flow-based techniques, often fail to capture the full semantic range of videos, leading to redundancy and inefficiencies. In this work, we propose CLIP4Video-Sampling: Global Semantics-Guided Multi-Granularity Frame Sampling for Video-Text Retrieval, a global semantics-guided multi-granularity frame sampling strategy designed to optimize both computational efficiency and retrieval accuracy. By integrating multi-scale global and local temporal sampling and leveraging the CLIP (Contrastive Language-Image Pre-training) model’s powerful feature extraction capabilities, our method significantly outperforms existing approaches in both zero-shot and fine-tuned video-text retrieval tasks on popular datasets. CLIP4Video-Sampling reduces redundancy, ensures keyframe coverage, and serves as an adaptable pre-processing module for multimodal models.
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
基金supported by the National Science Foundation(Grant No.1846784).
文摘Deep learning has transformed computational imaging,but traditional pixel-based representations limit their ability to capture continuous multiscale object features.Addressing this gap,we introduce a local conditional neural field(LCNF)framework,which leverages a continuous neural representation to provide flexible object representations.LCNF’s unique capabilities are demonstrated in solving the highly ill-posed phase retrieval problem of multiplexed Fourier ptychographic microscopy.Our network,termed neural phase retrieval(NeuPh),enables continuous-domain resolution-enhanced phase reconstruction,offering scalability,robustness,accuracy,and generalizability that outperform existing methods.NeuPh integrates a local conditional neural representation and a coordinate-based training strategy.We show that NeuPh can accurately reconstruct high-resolution phase images from low-resolution intensity measurements.Furthermore,NeuPh consistently applies continuous object priors and effectively eliminates various phase artifacts,demonstrating robustness even when trained on imperfect datasets.Moreover,NeuPh improves accuracy and generalization compared with existing deep learning models.We further investigate a hybrid training strategy combining both experimental and simulated datasets,elucidating the impact of domain shift between experiment and simulation.Our work underscores the potential of the LCNF framework in solving complex large-scale inverse problems,opening up new possibilities for deep-learning-based imaging techniques.
文摘This article examines the implementation of a virtual health assistant powered by Retrieval-Augmented Generation (RAG) and GPT-4, aimed at enhancing clinical support through personalized, real-time interactions with patients. The system is hypothesized to improve healthcare accessibility, operational efficiency, and patient outcomes by automating routine tasks and delivering accurate health information. The assistant leverages natural language processing and real-time data retrieval models to respond to patient inquiries, schedule appointments, provide medication reminders, assist with symptom triage, and answer insurance-related questions. By integrating RAG-based virtual care, the system reduces the burden on healthcare specialists and helps mitigate healthcare disparities, particularly in rural areas where traditional care is limited. Although the initial scope of testing did not validate all potential benefits, the results demonstrated high patient satisfaction and strong response accuracy, both critical for systems of this nature. These findings underscore the transformative potential of AI-driven virtual health assistants in enhancing patient engagement, streamlining operational workflows, and improving healthcare accessibility, ultimately contributing to better outcomes and more cost-effective care delivery.
基金Supported by Inner Mongolia Natural Science Fund(20080404MS0507)National Natural Science Fund(30660150)+1 种基金Education Ministry Higher Education School Science Innovation Project Major Program Cultivation Fund Program(707014)Inner Mongolia Natural Scientific Fund Major Program(200607010501)~~
文摘[Objective] The aim was to set up a plant digital information retrieval system.[Method] Plant digital information retrieval system was designed by combining with Microsoft Visual Basic 6.0 Enterprise Edition database management system and Structure Query Language.[Result] The system realized electronic management and retrieval of local plant information.The key words of retrieval included family,genus,formal name,Chinese name,Latin,morphological characteristics,habitat,collection people,collection places,and protect class and so on.[Conclusion] It provided reference for these problems of species identification and digital management of herbarium.
文摘Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and realized. The model is an extension of the traditional co-occurrence model by adding a decaying factor that decreases the mutual information when the distance between the terms increases. Experimental results on TREC-9 collections show this query expansion method results in significant improvements over the IR without query expansion.
基金The National Basic Research Program of China(973Program)(No.2004CB318104),the Knowledge Innovation Pro-gram of Chinese Academy of Sciences (No.13CX04).
文摘A concept-based approach is expected to resolve the word sense ambiguities in information retrieval and apply the semantic importance of the concepts, instead of the term frequency, to representing the contents of a document. Consequently, a formalized document framework is proposed. The document framework is used to express the meaning of a document with the concepts which are expressed by high semantic importance. The framework consists of two parts: the "domain" information and the "situation & background" information of a document. A document-extracting algorithm and a two-stage smoothing method are also proposed. The quantification of the similarity between the query and the document framework depends on the smoothing method. The experiments on the TREC6 collection demonstrate the feasibility and effectiveness of the proposed approach in information retrieval tasks. The average recall level precision of the model using the proposed approach is about 10% higher than that of traditional ones.
文摘An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.
基金Supported by the National Natural Science Foundation of China(60575034)Science Foundation of Guangxi Provincial Education Department(200708LX322)~~
文摘Through analyzing syntactic,semantic,pragmatic information,the retrieval system ACIS based on comprehensive information was established,which could achieve personalized information exaction to guide user s information retrieval.
文摘The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound.
基金The National Natural Science Foundation of China(No.61003158,61272377)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110027)
文摘The dual-retrieval (DR) operation sequencing problem in the flow-rack automated storage and retrieval system (AS/RS) is modeled as an assignment problem since it is equivalent to pairing outgoing unit-loads for each DR operation. A recursion symmetry Hungarian method (RSHM), modified from the Hungarian method, is proposed for generating a DR operation sequence with minimal total travel time, in which symmetry marking is introduced to ensure a feasible solution and recursion is adopted to break the endless loop caused by the symmetry marking. Simulation experiments are conducted to evaluate the cost effectiveness and the performance of the proposed method. Experimental results illustrate that compared to the single-shuttle machine, the dual-shuttle machine can reduce more than 40% of the total travel time of retrieval operations, and the RSHM saves about 5% to 10% of the total travel time of retrieval operations compared to the greedy-based heuristic.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2002AA413420).
文摘In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.