Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
A typical electronic communication system, such as GPS receiver, unmanned aerial vehicle's (UAV's) data link, and radar, faces multi-dimensional and complicated electromagnetic interference in operating environmen...A typical electronic communication system, such as GPS receiver, unmanned aerial vehicle's (UAV's) data link, and radar, faces multi-dimensional and complicated electromagnetic interference in operating environment. To measure the anti- interference performance of the electronic communication system in the complicated electromagnetic interference environment, a method of multi-dimensional and complicated electromagnetic interference hardware-in-the-loop simulation in an anechoic room is proposed. It takes into account the characteristics of interference signals and the positional relationship among interference, the receiver and the transmitter of the electronic communication system. It uses the grey relational method and the angular domain mapping error correction method to control the relevant parameters, the microwave switch and so on, thus achieving the approximately actual mapping of the outdoor multi-dimensional and complicated electromagnetic interference in the anechoic room. To verify the effectiveness of this method, the multi-dimensional and complicated electromagnetic interference of the UAV's data link is simulated as an example. The results show that the degree of correlation between the calculated signal to interference ratio of the data link receiver in the actual scene and the measured signal to interference ratio of the data link receiver simulated with this method in the anechoic room is 0.968 1, proving that the method is effective for simulating the complicated electromagnetic interference.展开更多
Multidimensional Scale Evaluation Rules as a performer in the field of learning assessment is feasible, but for each dimension settings, level settings and value setting need to be developed according to the actual ra...Multidimensional Scale Evaluation Rules as a performer in the field of learning assessment is feasible, but for each dimension settings, level settings and value setting need to be developed according to the actual raters, object evaluation, the focus of the evaluation. Scores of overall dimensions use variance analysis, and the results show a significant difference. In sub-dimension score comparison, the high group and low group both got higher scores in the degree of difficulty performing works and read music accuracy. The high group and low group are different on dimensions of the lowest score. Total scores in the scale of multi-dimensional evaluation of rules are positively correlated on the scores on the improvising horizontal dimension, but the correlation is not very high level, that is not all students who is better in playing levels, and they can get higher scores on the improvising horizontal dimension. Using multi-dimensional scale scores and teacher direct evaluation rules score are significantly different for student achievement.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
The Chebyshev pseudospectral approximation of the homogeneous initial boundary value problem for a class of multi-dimensional generalized symmetric regularized long wave (SRLW) equations is considered. The fully discr...The Chebyshev pseudospectral approximation of the homogeneous initial boundary value problem for a class of multi-dimensional generalized symmetric regularized long wave (SRLW) equations is considered. The fully discrete Chebyshev pseudospectral scheme is constructed. The convergence of the approximation solution and the optimum error of approximation solution are obtained.展开更多
Integrating with practical e-commerce application, this paper introduces a novel multi-dimension evaluation method to depict and calculate the trust values. The multi-dimension evaluation metrics include functional an...Integrating with practical e-commerce application, this paper introduces a novel multi-dimension evaluation method to depict and calculate the trust values. The multi-dimension evaluation metrics include functional and nonfunctional properties and corresponding weights. The continuous measurement values and the Markov chain mechanism are adopted to compute the trust value and detect the malicious behaviors. The current evaluation has larger influence factor on the next transaction behavior. A trust model is implemented with web service which consists of publication, filtrating, calculating and storage center. It is easily extended and the user only defines each property and its weights according to specific requirements, then the trust values are got. In order to conveniently manage and avoid the dead-lock, some constraint rules are proposed. The results show that the method based on multi-dimension can reflect objectively the dynamic change of trust values.展开更多
This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra...This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations in...This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p...The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.展开更多
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen...Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.展开更多
The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined co...The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),and cyclic simple shear,are conducted.Cyclic simple shear experiments on LCCs were performed to evaluate the damping and shear modulus.The investigated factors are vertical load(VL),leachate content(LC),frequency(F),and shear strain(ShS)for LCC.Forensic-based investigation optimization(FBIO)and equilibrium optimizer algorithm(EOA)were utilized in addition to multiple types of ensemble models,including adaptive boosting(ADB),gradient boosting regression tree(GBRT),extreme gradient boosting(XGB) and random forest(RF).The comparison of the methods showed that GBRT-FBIO and XGB-EOA models outperformed other models for shear modulus and damping of LCC.The p-value less than 0.0001 shows the significance of the used models in the response surface methodology(RSM)method.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity ...BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.展开更多
BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized...BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized by a breach in the gastric wall due to ulceration.Surgical intervention is essential for managing this life-threatening complication.However,the optimal surgical technique remains debatable among clinicians.Various methods have been employed,including simple closure,omental patch repair,and partial gastrectomy,each with distinct advantages and disadvantages.Understanding the comparative efficacy and postoperative outcomes of these techniques is crucial for improving patient care and surgical decision-making.This study addresses the need for a comprehensive analysis in this area.AIM To compare the efficacy and postoperative complications of different surgical methods for the treatment of gastric ulcer perforation.METHODS A retrospective analysis was conducted on 120 patients who underwent surgery for gastric ulcer perforation between September 2020 and June 2023.The patients were divided into three groups based on the surgical method:Simple closure,omental patch repair,and partial gastrectomy.The primary outcomes were the operative success rate and incidence of postoperative complications.Secondary outcomes included the length of hospital stay,recovery time,and long-term quality of life.RESULTS The operative success rates for simple closure,omental patch repair,and partial gastrectomy were 92.5%,95%,and 97.5%,respectively.Postoperative complications occurred in 20%,15%,and 17.5%of patients in each group,respectively.The partial gastrectomy group showed a significantly longer operative time(P<0.001)but the lowest rate of ulcer recurrence(2.5%,P<0.05).The omental patch repair group demonstrated the shortest hospital stay(mean 7.2 days,P<0.05)and fastest recovery time.CONCLUSION While all three surgical methods showed high success rates,omental patch repair demonstrated the best overall outcomes,with a balance of high efficacy,low complication rates,and shorter recovery time.However,the choice of the surgical method should be tailored to individual patient factors and the surgeon’s expertise.展开更多
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien...The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
[Objective] This study aimed to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province. [Method] Delphi method in conjunction with AHP method was adopted to establ...[Objective] This study aimed to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province. [Method] Delphi method in conjunction with AHP method was adopted to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province, and all the indexes in each hierarchy were ranked overall according to their weights. [Result] There were three hierarchies in this index system, totally including 21 indexes, among which water resource exploitation and utilization rate, sewage treatment rate and utilization of available water resources were the three crucial factors influencing the sustainable development. [Conclusion] This evaluation index system can reflect the true sustainable situation of the agricultural water resources in Liaoning Province.展开更多
In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points...In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points. This compactness framework holds provided that the approximate solutions are uniformly bounded and satisfy Hloc^-1(Ω) compactness conditions. As illustration, we show the existence of sonic-subsonic weak solution to n-dimensional (n ≥ 2) Euler equations for steady irrotational flow past obstacles or through an infinitely long nozzle. This is the first result concerning the sonic-subsonic limit for n-dimension (n ≥ 3).展开更多
Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are present...Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are presented based on the system. Firstly, a stepped-frequency signal is employed to achieve high range resolution, combining with a variety of signal processing tech- niques. Secondly, cross-range resolution is gained with a rotating table, and the high-resolution two-dimensional (2-D) imaging of the scale model is obtained by the microwave imaging theory. Finally, two receiving antennas with a small distance in altitude are used, and the three-dimensional (3-D) height distribution of scattering points on the scale model is extracted from the phase of images. Some typical bodies and a scale aircraft model are diagnosed in an anechoic chamber. The experimental results show that, after scaling with a metal sphere, the accurate one- dimensional (l-D) RCS pattern of the model is obtained, and it has a large dynamic range. When the bandwidth of the transmitting signal is 4 GHz, the resolution of the 2-D image can reach to 0.037 5 m. The 3-D height distribution of scattering points is given by interferometric measurement. This paper provides a feasible way to obtain high-precision scattering properties parameters of the scale aircraft model in a conventional rectangular anechoic chamber.展开更多
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金supported by the National Natural Science Foundation of China(61571368)the certain Ministry Foundation(2014607B006)
文摘A typical electronic communication system, such as GPS receiver, unmanned aerial vehicle's (UAV's) data link, and radar, faces multi-dimensional and complicated electromagnetic interference in operating environment. To measure the anti- interference performance of the electronic communication system in the complicated electromagnetic interference environment, a method of multi-dimensional and complicated electromagnetic interference hardware-in-the-loop simulation in an anechoic room is proposed. It takes into account the characteristics of interference signals and the positional relationship among interference, the receiver and the transmitter of the electronic communication system. It uses the grey relational method and the angular domain mapping error correction method to control the relevant parameters, the microwave switch and so on, thus achieving the approximately actual mapping of the outdoor multi-dimensional and complicated electromagnetic interference in the anechoic room. To verify the effectiveness of this method, the multi-dimensional and complicated electromagnetic interference of the UAV's data link is simulated as an example. The results show that the degree of correlation between the calculated signal to interference ratio of the data link receiver in the actual scene and the measured signal to interference ratio of the data link receiver simulated with this method in the anechoic room is 0.968 1, proving that the method is effective for simulating the complicated electromagnetic interference.
文摘Multidimensional Scale Evaluation Rules as a performer in the field of learning assessment is feasible, but for each dimension settings, level settings and value setting need to be developed according to the actual raters, object evaluation, the focus of the evaluation. Scores of overall dimensions use variance analysis, and the results show a significant difference. In sub-dimension score comparison, the high group and low group both got higher scores in the degree of difficulty performing works and read music accuracy. The high group and low group are different on dimensions of the lowest score. Total scores in the scale of multi-dimensional evaluation of rules are positively correlated on the scores on the improvising horizontal dimension, but the correlation is not very high level, that is not all students who is better in playing levels, and they can get higher scores on the improvising horizontal dimension. Using multi-dimensional scale scores and teacher direct evaluation rules score are significantly different for student achievement.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
文摘The Chebyshev pseudospectral approximation of the homogeneous initial boundary value problem for a class of multi-dimensional generalized symmetric regularized long wave (SRLW) equations is considered. The fully discrete Chebyshev pseudospectral scheme is constructed. The convergence of the approximation solution and the optimum error of approximation solution are obtained.
文摘Integrating with practical e-commerce application, this paper introduces a novel multi-dimension evaluation method to depict and calculate the trust values. The multi-dimension evaluation metrics include functional and nonfunctional properties and corresponding weights. The continuous measurement values and the Markov chain mechanism are adopted to compute the trust value and detect the malicious behaviors. The current evaluation has larger influence factor on the next transaction behavior. A trust model is implemented with web service which consists of publication, filtrating, calculating and storage center. It is easily extended and the user only defines each property and its weights according to specific requirements, then the trust values are got. In order to conveniently manage and avoid the dead-lock, some constraint rules are proposed. The results show that the method based on multi-dimension can reflect objectively the dynamic change of trust values.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20241529)China Postdoctoral Science Foundation(No.2024M750736)。
文摘This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金Supported by the NSF of Hubei Province(2022CFD042)。
文摘This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,Grant Number 22KJD470002.
文摘The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.
基金supported by grants from the National Natural Science Foundation of China(Nos.12172159 and 12362019).
文摘Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.
文摘The investigation of leachate-contaminated clay(LCC)is essential for landfill engineering assessment and achievement of sustainable development goals.Several static and dynamic laboratory tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),and cyclic simple shear,are conducted.Cyclic simple shear experiments on LCCs were performed to evaluate the damping and shear modulus.The investigated factors are vertical load(VL),leachate content(LC),frequency(F),and shear strain(ShS)for LCC.Forensic-based investigation optimization(FBIO)and equilibrium optimizer algorithm(EOA)were utilized in addition to multiple types of ensemble models,including adaptive boosting(ADB),gradient boosting regression tree(GBRT),extreme gradient boosting(XGB) and random forest(RF).The comparison of the methods showed that GBRT-FBIO and XGB-EOA models outperformed other models for shear modulus and damping of LCC.The p-value less than 0.0001 shows the significance of the used models in the response surface methodology(RSM)method.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.
文摘BACKGROUND Gastric ulcer perforation is a critical condition that can lead to significant morbidity and mortality if not promptly addressed.It is often the result of chronic peptic ulcer disease,which is characterized by a breach in the gastric wall due to ulceration.Surgical intervention is essential for managing this life-threatening complication.However,the optimal surgical technique remains debatable among clinicians.Various methods have been employed,including simple closure,omental patch repair,and partial gastrectomy,each with distinct advantages and disadvantages.Understanding the comparative efficacy and postoperative outcomes of these techniques is crucial for improving patient care and surgical decision-making.This study addresses the need for a comprehensive analysis in this area.AIM To compare the efficacy and postoperative complications of different surgical methods for the treatment of gastric ulcer perforation.METHODS A retrospective analysis was conducted on 120 patients who underwent surgery for gastric ulcer perforation between September 2020 and June 2023.The patients were divided into three groups based on the surgical method:Simple closure,omental patch repair,and partial gastrectomy.The primary outcomes were the operative success rate and incidence of postoperative complications.Secondary outcomes included the length of hospital stay,recovery time,and long-term quality of life.RESULTS The operative success rates for simple closure,omental patch repair,and partial gastrectomy were 92.5%,95%,and 97.5%,respectively.Postoperative complications occurred in 20%,15%,and 17.5%of patients in each group,respectively.The partial gastrectomy group showed a significantly longer operative time(P<0.001)but the lowest rate of ulcer recurrence(2.5%,P<0.05).The omental patch repair group demonstrated the shortest hospital stay(mean 7.2 days,P<0.05)and fastest recovery time.CONCLUSION While all three surgical methods showed high success rates,omental patch repair demonstrated the best overall outcomes,with a balance of high efficacy,low complication rates,and shorter recovery time.However,the choice of the surgical method should be tailored to individual patient factors and the surgeon’s expertise.
基金the National Natural Science Foundation of China(No.52275378)the National Key Laboratory for Precision Hot Processing of Metals(6142909200208)。
文摘The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
文摘[Objective] This study aimed to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province. [Method] Delphi method in conjunction with AHP method was adopted to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province, and all the indexes in each hierarchy were ranked overall according to their weights. [Result] There were three hierarchies in this index system, totally including 21 indexes, among which water resource exploitation and utilization rate, sewage treatment rate and utilization of available water resources were the three crucial factors influencing the sustainable development. [Conclusion] This evaluation index system can reflect the true sustainable situation of the agricultural water resources in Liaoning Province.
基金supported in part by NSFC (10825102) for distinguished youth scholarNational Basic Research Program of China (973 Program) under Grant No.2011CB808002
文摘In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points. This compactness framework holds provided that the approximate solutions are uniformly bounded and satisfy Hloc^-1(Ω) compactness conditions. As illustration, we show the existence of sonic-subsonic weak solution to n-dimensional (n ≥ 2) Euler equations for steady irrotational flow past obstacles or through an infinitely long nozzle. This is the first result concerning the sonic-subsonic limit for n-dimension (n ≥ 3).
基金supported by the National Natural Science Foundation of China(6120132061371023)
文摘Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are presented based on the system. Firstly, a stepped-frequency signal is employed to achieve high range resolution, combining with a variety of signal processing tech- niques. Secondly, cross-range resolution is gained with a rotating table, and the high-resolution two-dimensional (2-D) imaging of the scale model is obtained by the microwave imaging theory. Finally, two receiving antennas with a small distance in altitude are used, and the three-dimensional (3-D) height distribution of scattering points on the scale model is extracted from the phase of images. Some typical bodies and a scale aircraft model are diagnosed in an anechoic chamber. The experimental results show that, after scaling with a metal sphere, the accurate one- dimensional (l-D) RCS pattern of the model is obtained, and it has a large dynamic range. When the bandwidth of the transmitting signal is 4 GHz, the resolution of the 2-D image can reach to 0.037 5 m. The 3-D height distribution of scattering points is given by interferometric measurement. This paper provides a feasible way to obtain high-precision scattering properties parameters of the scale aircraft model in a conventional rectangular anechoic chamber.