It is shown that in Euclidean space with any number of spatial dimensions more than three, the Lorentz transform holds true if the proper time of each elementary particle is proportional to the length of its path in t...It is shown that in Euclidean space with any number of spatial dimensions more than three, the Lorentz transform holds true if the proper time of each elementary particle is proportional to the length of its path in the extra-dimensional subspace, and all elementary particles move at the speed of light in the complete space. The six-dimensional treatment of the Coulomb force of interaction between two charges is given. The electric force is due to the motion of charges in the extra-dimensional subspace and is equal to the corresponding Lorentz force.展开更多
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constr...To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.展开更多
This paper studies the unified symmetry of a nonholonomic system of non-Chetaev type with unilateral constraints in event space under infinitesimal transformations of group. Firstly, it gives the differential equation...This paper studies the unified symmetry of a nonholonomic system of non-Chetaev type with unilateral constraints in event space under infinitesimal transformations of group. Firstly, it gives the differential equations of motion of the system. Secondly, it obtains the definition and the criterion of the unified symmetry for the system. Thirdly, a new conserved quantity, besides the Noether conserved quantity and the Hojman conserved quantity, is deduced from the unified symmetry of a nonholonomic system of non-Chetaev type with unilateral constraints. Finally, an example is given to illustrate the application of the results.展开更多
We study the influence of the constraint in the parameter space on quantum games.Decomposing SU(2)operator into product of three rotation operators and controlling one kind of them,we impose a constraint on the parame...We study the influence of the constraint in the parameter space on quantum games.Decomposing SU(2)operator into product of three rotation operators and controlling one kind of them,we impose a constraint on the parameter space of the players' operator.We find that the constraint can provide a tuner to make the bilateral payoffs equal,so that the mismatch of the players' action at multi-equilibrium could be avoided.We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators,which is useful for making game models.展开更多
This paper presents a new nonholonomy criteria and reveals the physical interpretation of holonomoic and nonholonomic constraints acting on a free-flying space robot with or without interaction with a free Flying/Floa...This paper presents a new nonholonomy criteria and reveals the physical interpretation of holonomoic and nonholonomic constraints acting on a free-flying space robot with or without interaction with a free Flying/Floating target object. The analysis in this paper interprets the physical interpretation behind such constraints, and clarifies geometric and kinematic conditions that generate such constraints. Moreover, a new criterion of finding the holonomy/nonholonomy of constraints impose on a free-flying space robot with or without interaction with a floating object is presented as well. The proposed criteria are applicable in case of zero or non-zero initial momentum conditions. Such nonholonomy criteria are proposed by utilizing the concept of orthogonal projection matrices and singular value decomposition (SVD). Using this methodology will also enable us to verify online whether the constraints are violated in case of real-time applications and to take a correction action or switch the controllers. This criterion is still yet valid even the interaction with floating object is lost. Applications of the proposed criteria can be dedicated to in-orbit servicing robotic satellite to capture malfunctioned spacecrafts and satellites, docking space of NASA and Russian shuttles with International Space Station (ISA), building in-orbit stations, space rescue missions and asteroids dust sampling. Finally, simulation results are presented to demonstrate the effectiveness of the proposed criterion.展开更多
This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected ...This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected through a data acquisition system for real time control. The interaction between the process variables is shown to be challenging for single variable controllers, therefore multi-variable control is worth considering. A multi-variable state space model is obtained from on-line experimental data. The controller design is translated into a Quadratic Programming (QP) problem, in which a cost function subject to actuators linear inequality constraints is minimized. The outcome of the experimental results is that the main control objectives, such as set-point tracking and perturbations rejection under actuators constraints, are well achieved for both controlled variables simultaneously.展开更多
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topolo...In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.展开更多
In order to realize the explorer autonomy, the software architecture of autonomous mission management system (AMMS) is given for the deep space explorer, and the autonomous mission planning system, the kernel part of ...In order to realize the explorer autonomy, the software architecture of autonomous mission management system (AMMS) is given for the deep space explorer, and the autonomous mission planning system, the kernel part of this architecture, is designed in detail. In order to describe the parallel activity, the state timeline is introduced to build the formal model of the planning system and based on this model, the temporal constraint satisfaction planning algorithm is proposed to produce the explorer’s activity sequence. With some key subsystems of the deep space explorer as examples, the autonomous mission planning simulation system is designed. The results show that this system can calculate the executable activity sequence with the given mission goals and initial state of the explorer.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constra...A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.展开更多
文摘It is shown that in Euclidean space with any number of spatial dimensions more than three, the Lorentz transform holds true if the proper time of each elementary particle is proportional to the length of its path in the extra-dimensional subspace, and all elementary particles move at the speed of light in the complete space. The six-dimensional treatment of the Coulomb force of interaction between two charges is given. The electric force is due to the motion of charges in the extra-dimensional subspace and is equal to the corresponding Lorentz force.
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
文摘To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.
文摘This paper studies the unified symmetry of a nonholonomic system of non-Chetaev type with unilateral constraints in event space under infinitesimal transformations of group. Firstly, it gives the differential equations of motion of the system. Secondly, it obtains the definition and the criterion of the unified symmetry for the system. Thirdly, a new conserved quantity, besides the Noether conserved quantity and the Hojman conserved quantity, is deduced from the unified symmetry of a nonholonomic system of non-Chetaev type with unilateral constraints. Finally, an example is given to illustrate the application of the results.
文摘We study the influence of the constraint in the parameter space on quantum games.Decomposing SU(2)operator into product of three rotation operators and controlling one kind of them,we impose a constraint on the parameter space of the players' operator.We find that the constraint can provide a tuner to make the bilateral payoffs equal,so that the mismatch of the players' action at multi-equilibrium could be avoided.We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators,which is useful for making game models.
文摘This paper presents a new nonholonomy criteria and reveals the physical interpretation of holonomoic and nonholonomic constraints acting on a free-flying space robot with or without interaction with a free Flying/Floating target object. The analysis in this paper interprets the physical interpretation behind such constraints, and clarifies geometric and kinematic conditions that generate such constraints. Moreover, a new criterion of finding the holonomy/nonholonomy of constraints impose on a free-flying space robot with or without interaction with a floating object is presented as well. The proposed criteria are applicable in case of zero or non-zero initial momentum conditions. Such nonholonomy criteria are proposed by utilizing the concept of orthogonal projection matrices and singular value decomposition (SVD). Using this methodology will also enable us to verify online whether the constraints are violated in case of real-time applications and to take a correction action or switch the controllers. This criterion is still yet valid even the interaction with floating object is lost. Applications of the proposed criteria can be dedicated to in-orbit servicing robotic satellite to capture malfunctioned spacecrafts and satellites, docking space of NASA and Russian shuttles with International Space Station (ISA), building in-orbit stations, space rescue missions and asteroids dust sampling. Finally, simulation results are presented to demonstrate the effectiveness of the proposed criterion.
文摘This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected through a data acquisition system for real time control. The interaction between the process variables is shown to be challenging for single variable controllers, therefore multi-variable control is worth considering. A multi-variable state space model is obtained from on-line experimental data. The controller design is translated into a Quadratic Programming (QP) problem, in which a cost function subject to actuators linear inequality constraints is minimized. The outcome of the experimental results is that the main control objectives, such as set-point tracking and perturbations rejection under actuators constraints, are well achieved for both controlled variables simultaneously.
基金supported by the National Natural Science Foundation of China (10872036)the High Technological Research and Development Program of China (2008AA04Z118)the Airspace Natural Science Foundation (2007ZA23007)
文摘In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
文摘In order to realize the explorer autonomy, the software architecture of autonomous mission management system (AMMS) is given for the deep space explorer, and the autonomous mission planning system, the kernel part of this architecture, is designed in detail. In order to describe the parallel activity, the state timeline is introduced to build the formal model of the planning system and based on this model, the temporal constraint satisfaction planning algorithm is proposed to produce the explorer’s activity sequence. With some key subsystems of the deep space explorer as examples, the autonomous mission planning simulation system is designed. The results show that this system can calculate the executable activity sequence with the given mission goals and initial state of the explorer.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
基金National Natural Science Foundation ofChina(No.10 10 2 0 10 )
文摘A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.