A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic respo...A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic response caused by the inconsistent motions of the structural supports,and the second is the structural dynamic response to ground motion accelerations.This method is formally consistent with the classical response spectrum method,and the effects of multisupport excitation are considered for any modal response spectrum or modal superposition.If the seismic inputs at each support are the same,the support displacements caused by the pseudostatic response become rigid body displacements.The response spectrum in the case of multisupport excitations then reduces to that for uniform excitations.In other words,this multisupport response spectrum method is a modification and extension of the existing response spectrum method under uniform excitation.Moreover,most of the coherency coefficients in this formulation are simplified by approximating the ground motion excitation as white noise.The results indicate that this simplification can reduce the calculation time while maintaining accuracy.Furthermore,the internal forces obtained by the multisupport response spectrum method are compared with those produced by the traditional response spectrum method in two case studies of existing long-span structures.Because the effects of inconsistent support displacements are not considered in the traditional response spectrum method,the values of internal forces near the supports are underestimated.These regions are important potential failure points and deserve special attention in the seismic design of reticulated structures.展开更多
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo...The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.展开更多
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass a...Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.展开更多
Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced ...Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.展开更多
Two kinds of determining methods for scenario earthquakes are presented in this paper,namely the weighted average method and maximum probability method. This paper briefly introduces the two methods,then taking a high...Two kinds of determining methods for scenario earthquakes are presented in this paper,namely the weighted average method and maximum probability method. This paper briefly introduces the two methods,then taking a high-rise building in the Yantai area as a case study,we use the weighted average method and maximum probability method to realize seismic hazard analysis, determine earthquake magnitude, the epicenter and specific space position,and then give two response spectrums of the two methods. By comparing the differences of response spectrums between the two methods,we find that the weighted average method is more suitable for long period structures,while considering long period safety. The maximum probability method is more suitable for short period structures. It is reasonable to choose a corresponding different method when the structures have different natural vibration periods.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of na...Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRf" method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical imp...In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical implementation was made in time domain.At the same time,a simplified approximation for seismic response analysis of pile-soil-structure system was briefly presented.Furthermore,comparative study was performed for an engineering example.Through comparative analysis,it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method.These results show that spectrum characteristics and intensity of input earthquakes are two important factors that can notablely influence the seismic response characteristics of superstructure.When the input ground motion acceleration amplitude gradually increases from 1 to 4 m/s2,the acceleration of pier top will increase,but it will not be simply proportional to the increase of input acceleration amplitude.展开更多
The time-history response of a structure-pile system during soil liquefaction is highly complicated and several analytical methods have been proposed through the accuracy verification based on the comparison with the ...The time-history response of a structure-pile system during soil liquefaction is highly complicated and several analytical methods have been proposed through the accuracy verification based on the comparison with the experimental works. However, the analytical methods with higher accuracy often require large computational loads and are not necessarily preferred in the actual design practice. On the other hand, while the response spectrum method is not accurate compared to the aforementioned methods, it can provide useful design guidelines in the preliminary stage for structure-pile systems under soil liquefaction with acceptable accuracy. In this paper, the previously proposed response spectrum method for a structure-pile-soil system is used where the effect of soil liquefaction is taken into account by introducing the so-called p-multiplier method. It is shown that, while in the case of inner partial liquefaction with a non-liquefied layer at the top, the demand on the pile moment is large due to the inertial effect of that non-liquefied layer at the top, in the case of overall liquefaction near the ground surface, the demand is smaller than the case of inner partial liquefaction.展开更多
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
In this paper, a new method for seismic hazard analysis, the probability-consistent method based on practical ground surface motion is proposed. Time histories on ground surface in the method correspond to earthquakes...In this paper, a new method for seismic hazard analysis, the probability-consistent method based on practical ground surface motion is proposed. Time histories on ground surface in the method correspond to earthquakes occurring at potential sources around sites. So of the envelope parameter, response spectrum, peak ground acceleration are of physical sense. Neglecting the response of site soil layers, the method is the same as routine probability-consistent method. The natural seismic acceleration time histories can be used for input wave directly. Generating ground motion is an approximation under lack of data of strong motion. Along with accumulating of the strong motion data around sites, we can describe the seismic environment more objectively.展开更多
基金Major Program of National Science Foundation of China Under Grant No.90715005Program for New Century Excellent Talents in University Under Grant No. NCET-07-0186Doctoral Fund of Ministry of Education of China Under Grant No.200802860007
文摘A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic response caused by the inconsistent motions of the structural supports,and the second is the structural dynamic response to ground motion accelerations.This method is formally consistent with the classical response spectrum method,and the effects of multisupport excitation are considered for any modal response spectrum or modal superposition.If the seismic inputs at each support are the same,the support displacements caused by the pseudostatic response become rigid body displacements.The response spectrum in the case of multisupport excitations then reduces to that for uniform excitations.In other words,this multisupport response spectrum method is a modification and extension of the existing response spectrum method under uniform excitation.Moreover,most of the coherency coefficients in this formulation are simplified by approximating the ground motion excitation as white noise.The results indicate that this simplification can reduce the calculation time while maintaining accuracy.Furthermore,the internal forces obtained by the multisupport response spectrum method are compared with those produced by the traditional response spectrum method in two case studies of existing long-span structures.Because the effects of inconsistent support displacements are not considered in the traditional response spectrum method,the values of internal forces near the supports are underestimated.These regions are important potential failure points and deserve special attention in the seismic design of reticulated structures.
基金National Natural Science Foundation of China under Grant Nos.51427901 and 51678407Tianjin Municipal Education Commission under Grant No.2021KJ055Fundamental Research Funds for the Central Universities of China under Grant No.2000560616。
文摘The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.
文摘Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
文摘Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.
基金funded by the Basic Scientific Research and Business Item of Central Public-interest Scientific Institution,China(ZDJ2012-12)
文摘Two kinds of determining methods for scenario earthquakes are presented in this paper,namely the weighted average method and maximum probability method. This paper briefly introduces the two methods,then taking a high-rise building in the Yantai area as a case study,we use the weighted average method and maximum probability method to realize seismic hazard analysis, determine earthquake magnitude, the epicenter and specific space position,and then give two response spectrums of the two methods. By comparing the differences of response spectrums between the two methods,we find that the weighted average method is more suitable for long period structures,while considering long period safety. The maximum probability method is more suitable for short period structures. It is reasonable to choose a corresponding different method when the structures have different natural vibration periods.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.
基金National Natural Science Foundation of China under Grant No.10972005National Basic Research Program of China under Grant No.2007CB714603
文摘Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRf" method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.
基金Project(Y2007F48) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SDTS20080422) supported by the Specialized Development Foundation for Taishan Scholars of Shandong Province, China Project(SDVS20090525) supported by the Specialized Foundation for Domestic Visiting Scholars of Shandong Province,China
文摘In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical implementation was made in time domain.At the same time,a simplified approximation for seismic response analysis of pile-soil-structure system was briefly presented.Furthermore,comparative study was performed for an engineering example.Through comparative analysis,it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method.These results show that spectrum characteristics and intensity of input earthquakes are two important factors that can notablely influence the seismic response characteristics of superstructure.When the input ground motion acceleration amplitude gradually increases from 1 to 4 m/s2,the acceleration of pier top will increase,but it will not be simply proportional to the increase of input acceleration amplitude.
文摘The time-history response of a structure-pile system during soil liquefaction is highly complicated and several analytical methods have been proposed through the accuracy verification based on the comparison with the experimental works. However, the analytical methods with higher accuracy often require large computational loads and are not necessarily preferred in the actual design practice. On the other hand, while the response spectrum method is not accurate compared to the aforementioned methods, it can provide useful design guidelines in the preliminary stage for structure-pile systems under soil liquefaction with acceptable accuracy. In this paper, the previously proposed response spectrum method for a structure-pile-soil system is used where the effect of soil liquefaction is taken into account by introducing the so-called p-multiplier method. It is shown that, while in the case of inner partial liquefaction with a non-liquefied layer at the top, the demand on the pile moment is large due to the inertial effect of that non-liquefied layer at the top, in the case of overall liquefaction near the ground surface, the demand is smaller than the case of inner partial liquefaction.
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
文摘In this paper, a new method for seismic hazard analysis, the probability-consistent method based on practical ground surface motion is proposed. Time histories on ground surface in the method correspond to earthquakes occurring at potential sources around sites. So of the envelope parameter, response spectrum, peak ground acceleration are of physical sense. Neglecting the response of site soil layers, the method is the same as routine probability-consistent method. The natural seismic acceleration time histories can be used for input wave directly. Generating ground motion is an approximation under lack of data of strong motion. Along with accumulating of the strong motion data around sites, we can describe the seismic environment more objectively.