In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon i...Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon in parameter spaces are carried out broadly in many fields,and the research on nonlinear gear systems has attracted the attention of many scholars.But there is little study on the solution domain boundary of nonlinear gear systems.For a periodic non-autonomous nonlinear dynamic system with several control parameters,a solution domain boundary analysis method of nonlinear systems in parameter spaces is proposed,which combines the cell mapping method based on Poincaré point mapping in phase spaces with the domain decomposition technique of parameter spaces.The cell mapping is known as a global analysis method to analyze the global behavior of a nonlinear dynamic system with finite dimensions,and the basic idea of domain decomposition techniques is to divide and rule.The method is applied to analyze the solution domain boundaries in parameter spaces of a nonlinear gear system.The distribution of different period domains,chaos domain and the domain boundaries between different period domains and chaotic domain are obtained in control parameter spaces constituted by meshing damping ratio with excitation frequency,fluctuation coefficient of meshing stiffness and average exciting force respectively by calculation.The calculation results show that as the meshing damping increases,the responses of the system change towards a single motion,while the variations of the excitation frequency,meshing stiffness and exciting force make the solution domain presenting diversity.The proposed research contribution provides evidence for vibration control and parameter design of the gear system,and confirms the validity of the solution domain boundary analysis method.展开更多
We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSS...We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSSG structure based algorithm is very effective and efficient.展开更多
By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this pape...By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.展开更多
This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted...This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.展开更多
Using Daher's fixed point theorem, we obtain a local existence theorem, in which the assumption is weaker than That in the Theorem 2.1 in [2]. Based on this theorem, we get a global existence theorem which is an e...Using Daher's fixed point theorem, we obtain a local existence theorem, in which the assumption is weaker than That in the Theorem 2.1 in [2]. Based on this theorem, we get a global existence theorem which is an extension of certain results for ordinary differential equations.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering d...This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering different operating conditions can be directly obtained by plugging values into multiple symbolic variables,such that the power injections and consumptions of selected buses or areas can be independently adjusted.This method first derives a power flow solution through a Multivariate Power Series(MPS).Next,the MQD method is applied to transform the obtained MPS to a Multivariate Pad´e Approximants(MPA)to expand the Radius of Convergence(ROC),so that the accuracy of the derived analytical solution can be significantly increased.In addition,the hypersurface of the voltage stability boundary can be identified by an analytical formula obtained from the coefficients of MPA.This direct method for power flow solutions and voltage stability boundaries is fast for many online applications,since such analytical solutions can be derived offline and evaluated online by only plugging values into the symbolic variables according to the actual operating conditions.The proposed method is validated in detail on New England 39-bus and IEEE 118-bus systems with independent load variations in multi-regions.展开更多
The contact problem for the elastic sphere indenting a layered half-space is considered. Analytical methods for solving this problem have been developed on the basis of the 3-D fundamental solution of a half space wit...The contact problem for the elastic sphere indenting a layered half-space is considered. Analytical methods for solving this problem have been developed on the basis of the 3-D fundamental solution of a half space with a single coating layer under a normal concentrated force on the surface. The normal pressure distribution within the contact zone is assumed as Hertzian type. The solutions are constructed using superposition principle in the form of infinite series. Through comparing with the numerical results of FEM,it can be verified that the exact solutions have a rapid convergence rate and the stresses and displacements are mainly determined by the first term,which is corresponding to the solution of homogeneous half-space under Hertzian loading. The contact radius can be predicted applying the method.展开更多
Kunio Hidano[4] has shown that the global and local C2-solutions for semilinear wave equations with spherical symmetry in three space dimensions. This paper studies the global and local C2-solutions for the semilinea...Kunio Hidano[4] has shown that the global and local C2-solutions for semilinear wave equations with spherical symmetry in three space dimensions. This paper studies the global and local C2-solutions for the semilinear wave equations without spherical symmetry in three space dimensions. A problem put forward by Hiroyuki Takamura[2] is partially answered.展开更多
We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonli...We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.展开更多
In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the h...In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.展开更多
This is the second part(also the main part) of the papers with the same title.Here we will discuss the existence and uniqueness theorem for the quasi-linear SEE(Stochastic equation of evolution).We will also discuss a...This is the second part(also the main part) of the papers with the same title.Here we will discuss the existence and uniqueness theorem for the quasi-linear SEE(Stochastic equation of evolution).We will also discuss an aproximation theorem展开更多
In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are est...In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local o...A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.展开更多
The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the sec...The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.展开更多
The natural convection heat transfer of a 60% sucrose solution in a vertical converging-diverging tube(CD) with regularly-spaced twisted tapes(RSTT) has been investigated numerically and experimentally. The effects of...The natural convection heat transfer of a 60% sucrose solution in a vertical converging-diverging tube(CD) with regularly-spaced twisted tapes(RSTT) has been investigated numerically and experimentally. The effects of wall temperature and number of RSTT on the Nusselt number were studied in detail. The distributions of velocity and temperature in the 60% sucrose solution were studied and the simulated results of CD with RSTT were compared with those of the smooth tube. The influence of Rayleigh number and RSTT on the Nusselt number was conducted experimentally. The results indicate that the Nusselt number of the 60% sucrose solution obviously increased with the number of RSTT but increased inconspicuously with 2 and more twisted tapes. The simulation shows that the distance for achieving an optimal heat transfer performance is 46 times the diameter of the tube. The mechanism of the natural convection heat transfer enhancement of the 60% sucrose solution in relationship with the CD and the RSTT was analyzed, and the change of average tangential velocity with the axial distance was presented to demonstrate that the enhancement of heat transfer was realized mainly because of the increase in tangential velocity.展开更多
We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like ...We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions.展开更多
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2009AA04Z404)
文摘Mastering the influence laws of parameters on the solution structure of nonlinear systems is the basis of carrying out vibration isolation and control.Many researches on solution structure and bifurcation phenomenon in parameter spaces are carried out broadly in many fields,and the research on nonlinear gear systems has attracted the attention of many scholars.But there is little study on the solution domain boundary of nonlinear gear systems.For a periodic non-autonomous nonlinear dynamic system with several control parameters,a solution domain boundary analysis method of nonlinear systems in parameter spaces is proposed,which combines the cell mapping method based on Poincaré point mapping in phase spaces with the domain decomposition technique of parameter spaces.The cell mapping is known as a global analysis method to analyze the global behavior of a nonlinear dynamic system with finite dimensions,and the basic idea of domain decomposition techniques is to divide and rule.The method is applied to analyze the solution domain boundaries in parameter spaces of a nonlinear gear system.The distribution of different period domains,chaos domain and the domain boundaries between different period domains and chaotic domain are obtained in control parameter spaces constituted by meshing damping ratio with excitation frequency,fluctuation coefficient of meshing stiffness and average exciting force respectively by calculation.The calculation results show that as the meshing damping increases,the responses of the system change towards a single motion,while the variations of the excitation frequency,meshing stiffness and exciting force make the solution domain presenting diversity.The proposed research contribution provides evidence for vibration control and parameter design of the gear system,and confirms the validity of the solution domain boundary analysis method.
文摘We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSSG structure based algorithm is very effective and efficient.
文摘By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.
文摘This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.
文摘Using Daher's fixed point theorem, we obtain a local existence theorem, in which the assumption is weaker than That in the Theorem 2.1 in [2]. Based on this theorem, we get a global existence theorem which is an extension of certain results for ordinary differential equations.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
基金supported by the National Natural Science Foundation of China under Project 52007133 and U22B20100。
文摘This paper proposes a novel Multivariate Quotient-Difference(MQD)method to obtain the approximate analytical solution for AC power flow equations.Therefore,in the online environment,the power flow solutions covering different operating conditions can be directly obtained by plugging values into multiple symbolic variables,such that the power injections and consumptions of selected buses or areas can be independently adjusted.This method first derives a power flow solution through a Multivariate Power Series(MPS).Next,the MQD method is applied to transform the obtained MPS to a Multivariate Pad´e Approximants(MPA)to expand the Radius of Convergence(ROC),so that the accuracy of the derived analytical solution can be significantly increased.In addition,the hypersurface of the voltage stability boundary can be identified by an analytical formula obtained from the coefficients of MPA.This direct method for power flow solutions and voltage stability boundaries is fast for many online applications,since such analytical solutions can be derived offline and evaluated online by only plugging values into the symbolic variables according to the actual operating conditions.The proposed method is validated in detail on New England 39-bus and IEEE 118-bus systems with independent load variations in multi-regions.
文摘The contact problem for the elastic sphere indenting a layered half-space is considered. Analytical methods for solving this problem have been developed on the basis of the 3-D fundamental solution of a half space with a single coating layer under a normal concentrated force on the surface. The normal pressure distribution within the contact zone is assumed as Hertzian type. The solutions are constructed using superposition principle in the form of infinite series. Through comparing with the numerical results of FEM,it can be verified that the exact solutions have a rapid convergence rate and the stresses and displacements are mainly determined by the first term,which is corresponding to the solution of homogeneous half-space under Hertzian loading. The contact radius can be predicted applying the method.
基金Supported by youth foundation of Sichuan province (1999-09)
文摘Kunio Hidano[4] has shown that the global and local C2-solutions for semilinear wave equations with spherical symmetry in three space dimensions. This paper studies the global and local C2-solutions for the semilinear wave equations without spherical symmetry in three space dimensions. A problem put forward by Hiroyuki Takamura[2] is partially answered.
文摘We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.
文摘In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.
文摘This is the second part(also the main part) of the papers with the same title.Here we will discuss the existence and uniqueness theorem for the quasi-linear SEE(Stochastic equation of evolution).We will also discuss an aproximation theorem
基金supported by the National Natural Science Foundation of China(11172268)
文摘In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
文摘A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.
基金theResearchFoundationofEducationalCommitteeofYunnanProvince China
文摘The uniqueness for the solutions mentioned in the subject is proved by using the uniqueness of the solution for the internal boundary problem of Laplace and bi-Laplace equations of the first kind as well as of the second.
基金the Major Science and Technology Projects of Guangdong Province (No. 2011A080804012)
文摘The natural convection heat transfer of a 60% sucrose solution in a vertical converging-diverging tube(CD) with regularly-spaced twisted tapes(RSTT) has been investigated numerically and experimentally. The effects of wall temperature and number of RSTT on the Nusselt number were studied in detail. The distributions of velocity and temperature in the 60% sucrose solution were studied and the simulated results of CD with RSTT were compared with those of the smooth tube. The influence of Rayleigh number and RSTT on the Nusselt number was conducted experimentally. The results indicate that the Nusselt number of the 60% sucrose solution obviously increased with the number of RSTT but increased inconspicuously with 2 and more twisted tapes. The simulation shows that the distance for achieving an optimal heat transfer performance is 46 times the diameter of the tube. The mechanism of the natural convection heat transfer enhancement of the 60% sucrose solution in relationship with the CD and the RSTT was analyzed, and the change of average tangential velocity with the axial distance was presented to demonstrate that the enhancement of heat transfer was realized mainly because of the increase in tangential velocity.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2019R1F1A1057775)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07048620).
文摘We investigate the following elliptic equations:⎧⎩⎨−M(∫R Nϕ(|∇u|2)dx)div(ϕ′(|∇u|2)∇u)+|u|α−2 u=λh(x,u),u(x)→0,as|x|→∞,in R N,where N≥2,1<p<q<N,α<q,1<α≤p∗q′/p′with p∗=NpN−p,ϕ(t)behaves like t q/2 for small t and t p/2 for large t,and p′and q′are the conjugate exponents of p and q,respectively.We study the existence of nontrivial radially symmetric solutions for the problem above by applying the mountain pass theorem and the fountain theorem.Moreover,taking into account the dual fountain theorem,we show that the problem admits a sequence of small-energy,radially symmetric solutions.