Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on a...Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.展开更多
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and break...This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.展开更多
Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants wit...Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.展开更多
60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data...60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data is often contaminated by non-line-of-sight(NLOS)transmission.First,six features of 60GHz mm Wave signal under LOS and NLOS conditions are evaluated.Next,a classifier constructed by random forest(RF)algorithm is used to identify line-of-sight(LOS)or NLOS channel.The identification mechanism has excellent generalization performance and the classification accuracy is over 97%.Finally,based on the identification results,a residual weighted least squares positioning method is proposed.All ranging information including that under NLOS channels is fully utilized,positioning failure caused by insufficient LOS links can be avoided.Compared with the conventional least squares approach,the positioning error of the proposed algorithm is reduced by 49%.展开更多
Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orien...Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.展开更多
The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe u...Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected.展开更多
-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model te...-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.展开更多
In a preceding paper, the theoretical and experimental, deterministic and random, scalar and vector, kinematic structures, the theoretical and experimental, deterministic-deterministic, deterministic-random, random-de...In a preceding paper, the theoretical and experimental, deterministic and random, scalar and vector, kinematic structures, the theoretical and experimental, deterministic-deterministic, deterministic-random, random-deterministic, random-random, scalar and vector, dynamic structures have been developed to compute the exact solution for wave turbulence of exponential pulsons and oscillons that is governed by the nonstationary three-dimensional Navier-Stokes equations. The rectangular, diagonal, and triangular summations of matrices of the turbulent kinetic energy and general terms of numerous sums have been used in the current paper to develop theoretical quantization of the kinetic energy of exact wave turbulence. Nested structures of a cumulative energy pulson, a deterministic energy pulson, a deterministic internal energy oscillon, a deterministic-random internal energy oscillon, a random internal energy oscillon, a random energy pulson, a deterministic diagonal energy oscillon, a deterministic external energy oscillon, a deterministic-random external energy oscillon, a random external energy oscillon, and a random diagonal energy oscillon have been established. In turn, the energy pulsons and oscillons include deterministic group pulsons, deterministic internal group oscillons, deterministic-random internal group oscillons, random internal group oscillons, random group pulsons, deterministic diagonal group oscillons, deterministic external group oscillons, deterministic-random external group oscillons, random external group oscillons, and random diagonal group oscillons. Sequentially, the group pulsons and oscillons contain deterministic wave pulsons, deterministic internal wave oscillons, deterministic-random internal wave oscillons, random internal wave oscillons, random wave pulsons, deterministic diagonal wave oscillons, deterministic external wave oscillons, deterministic-random external wave oscillons, random external wave oscillons, random diagonal wave oscillons. Consecutively, the wave pulsons and oscillons are composed of deterministic elementary pulsons, deterministic internal elementary oscillons, deterministic-random internal elementary oscillons, random internal elementary oscillons, random elementary pulsons, deterministic diagonal elementary oscillons, deterministic external elementary oscillons, deterministic-random external elementary oscillons, random-deterministic external elementary oscillons, random external elementary oscillons, and random diagonal elementary oscillons. Symbolic computations of exact expansions have been performed using experimental and theoretical programming in Maple.展开更多
Ocean wave energy is a significant and promising source of renewable energy.However,the energy harvesting is challenging due to the multi-directional nature of waves.This paper proposes a magnetic-field-assisted tribo...Ocean wave energy is a significant and promising source of renewable energy.However,the energy harvesting is challenging due to the multi-directional nature of waves.This paper proposes a magnetic-field-assisted triboelectric nanogenerator(MFATENG)for harvesting multi-directional wave energy.By incorporating a magnetic field,the planar motion of the pendulum is converted into spatial motion,increasing the triggering of multilayered TENG(M-TENG)and enhancing the output energy of the MFA-TENG.Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73%by utilizing the magnetic field.Moreover,a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG,aiming to obtain optimal output performance.The results showcase the impressive output performance of the M-TENG,generating outputs of 250 V,18μA,and 255 nC.Furthermore,the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions.This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.展开更多
The mild-slope equation derived by Berkhoff (1972), has widely been used in the numerical calculation of refraction and diffraction of regular waves. However, it is well known that the random sea waves has a significa...The mild-slope equation derived by Berkhoff (1972), has widely been used in the numerical calculation of refraction and diffraction of regular waves. However, it is well known that the random sea waves has a significant effect in the refraction and diffraction problems. In this paper, a new form of time-dependent mild slope equation for irregular waves was derived with Fade approximation and Kubo's time series concept. The equation was simplified using WKB method, and simple and practical irregular mild slope equation was obtained. Results of numerical calculations are compared with those of laboratory experiments.展开更多
A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated wate...A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.展开更多
Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum. The evolution of initial random wave trains is namerically carried out within the framework of the...Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum. The evolution of initial random wave trains is namerically carried out within the framework of the modified fourorder nonlinear Schroedinger equation (mNLSE), and some involved influence factors are also discussed. Results show that if the sideband instability is satisfied, a random wave train may evolve into a freak wave train, and simultaneously the setting of the Phillips paranleter and enhancement coefficient of JONSWAP spectrum and initial random phases is very important for the formation of freak waves. The way to increase the generation efficiency of freak waves thsough changing the involved parameters is also presented.展开更多
An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains ...An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height H& and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger H[x tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves.展开更多
An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters. The data used to calibrate and val...An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters. The data used to calibrate and validate the ANN models are obtained from an experiment. Multilayer feed-forward neural networks that are trained with the back-propagation algorithm are constructed by use of three design parameters (i.e. wave surface height, horizontal and vertical velocities) as network inputs and the ultimate inline force as the only output. A sensitivity analysis is conducted on the ANN models to investigate the generalization ability (robustness) of the developed models, and predictions from the ANN models are compared to those obtained from Morison equation which is usually used to determine inline force as a computational method. With the existing data, it is found that least square method (LSM) gives less error in determining drag and inertia coefficients of Morison equation. With regard to the predicted results agreeing with calculations achieved from Morison equation that used LSM method, neural network has high efficiency considering its convenience, simplicity and promptitude. The outcome of this study can contribute to reducing the errors in predicting hydrodynamic inline force by use of ANN and to improve the reliability of that in comparison with the more practical state of Morison equation. Therefore, this method can be applied to relevant engineering projects with satisfactory results展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The...This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.展开更多
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displa...In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.展开更多
According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order ra...According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order random model of the unified wave motion process for nonlinear irregular waves and their interactions with vertical wall in uniform current is formulated, the corresponding theoretical nonlinear spectrum is derived, and the digital simulation model suitable to the use of the FFT (Fast Fourier Transform) algorithm is also given. Simulations of wave surface, wave pressure, total wave pressure and its moment are performed. The probability properties and statistical characteristics of these realizations are tested, which include the verifications of normality for linear process and of non-normality for nonlinear process; the consistencies of the theoretical spectra with simulated ones; the probability properties of apparent characteristics, such as amplitudes, periods, and extremes (maximum and minimum, positive and negative extremes). The statistical analysis and comparisons demonstrate that the proposed theoretical and computing models are realistic and effective, and estimated spectra are in good agreement with the theoretical ones, and the probability properties of the simulated waves are similar to those of the sea waves. At the same time, the simulating computation can be completed rapidly and easily.展开更多
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations fo...New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.展开更多
文摘Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.
基金supported by the National Natural Science Foundation of China (50879085)the Program for New Century Excellent Talents in University(NCET-07-0778)Fundamental Research Funds for the Central Universities (2012QNA4020)
文摘This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.
基金supported by Technology Innovation Special Project of Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine.
文摘Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.
基金supported by National Natural Science Foundation of China(No.62101298)Collaborative Education Project between Industry and Academia,China(22050609312501)。
文摘60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data is often contaminated by non-line-of-sight(NLOS)transmission.First,six features of 60GHz mm Wave signal under LOS and NLOS conditions are evaluated.Next,a classifier constructed by random forest(RF)algorithm is used to identify line-of-sight(LOS)or NLOS channel.The identification mechanism has excellent generalization performance and the classification accuracy is over 97%.Finally,based on the identification results,a residual weighted least squares positioning method is proposed.All ranging information including that under NLOS channels is fully utilized,positioning failure caused by insufficient LOS links can be avoided.Compared with the conventional least squares approach,the positioning error of the proposed algorithm is reduced by 49%.
文摘Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
文摘Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected.
文摘-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.
文摘In a preceding paper, the theoretical and experimental, deterministic and random, scalar and vector, kinematic structures, the theoretical and experimental, deterministic-deterministic, deterministic-random, random-deterministic, random-random, scalar and vector, dynamic structures have been developed to compute the exact solution for wave turbulence of exponential pulsons and oscillons that is governed by the nonstationary three-dimensional Navier-Stokes equations. The rectangular, diagonal, and triangular summations of matrices of the turbulent kinetic energy and general terms of numerous sums have been used in the current paper to develop theoretical quantization of the kinetic energy of exact wave turbulence. Nested structures of a cumulative energy pulson, a deterministic energy pulson, a deterministic internal energy oscillon, a deterministic-random internal energy oscillon, a random internal energy oscillon, a random energy pulson, a deterministic diagonal energy oscillon, a deterministic external energy oscillon, a deterministic-random external energy oscillon, a random external energy oscillon, and a random diagonal energy oscillon have been established. In turn, the energy pulsons and oscillons include deterministic group pulsons, deterministic internal group oscillons, deterministic-random internal group oscillons, random internal group oscillons, random group pulsons, deterministic diagonal group oscillons, deterministic external group oscillons, deterministic-random external group oscillons, random external group oscillons, and random diagonal group oscillons. Sequentially, the group pulsons and oscillons contain deterministic wave pulsons, deterministic internal wave oscillons, deterministic-random internal wave oscillons, random internal wave oscillons, random wave pulsons, deterministic diagonal wave oscillons, deterministic external wave oscillons, deterministic-random external wave oscillons, random external wave oscillons, random diagonal wave oscillons. Consecutively, the wave pulsons and oscillons are composed of deterministic elementary pulsons, deterministic internal elementary oscillons, deterministic-random internal elementary oscillons, random internal elementary oscillons, random elementary pulsons, deterministic diagonal elementary oscillons, deterministic external elementary oscillons, deterministic-random external elementary oscillons, random-deterministic external elementary oscillons, random external elementary oscillons, and random diagonal elementary oscillons. Symbolic computations of exact expansions have been performed using experimental and theoretical programming in Maple.
基金supported by the National Key Research and Development Project from Minister of Science and Technology of China(Nos.2021YFA1201604 and 2021YFA1201601).
文摘Ocean wave energy is a significant and promising source of renewable energy.However,the energy harvesting is challenging due to the multi-directional nature of waves.This paper proposes a magnetic-field-assisted triboelectric nanogenerator(MFATENG)for harvesting multi-directional wave energy.By incorporating a magnetic field,the planar motion of the pendulum is converted into spatial motion,increasing the triggering of multilayered TENG(M-TENG)and enhancing the output energy of the MFA-TENG.Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73%by utilizing the magnetic field.Moreover,a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG,aiming to obtain optimal output performance.The results showcase the impressive output performance of the M-TENG,generating outputs of 250 V,18μA,and 255 nC.Furthermore,the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions.This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.
基金The research was financially supported by the Doctor degree Program Foundation of State Education Commission of China
文摘The mild-slope equation derived by Berkhoff (1972), has widely been used in the numerical calculation of refraction and diffraction of regular waves. However, it is well known that the random sea waves has a significant effect in the refraction and diffraction problems. In this paper, a new form of time-dependent mild slope equation for irregular waves was derived with Fade approximation and Kubo's time series concept. The equation was simplified using WKB method, and simple and practical irregular mild slope equation was obtained. Results of numerical calculations are compared with those of laboratory experiments.
基金The National Natural Science Foundation of China under contract No.51279023the Public Science and Technology Research Funds Projects of Ocean under contract No.201205023+1 种基金the Special Funds for Postdoctoral Innovative Projects of Liaoning Province of China under contract No.2011921018the Special Funds for Talent Projects of Dalian Ocean University under contract No.SYYJ2011004
文摘A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.
基金supported by the International Science and Technology Cooperation Program(Grant No.2007DFA60490)the National Natural Science Foundation of China(Grant No.50679078)the Innovation Foundation of Guangzhou Institute of Energy Conversion (Grant No.0807r51001)
文摘Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum. The evolution of initial random wave trains is namerically carried out within the framework of the modified fourorder nonlinear Schroedinger equation (mNLSE), and some involved influence factors are also discussed. Results show that if the sideband instability is satisfied, a random wave train may evolve into a freak wave train, and simultaneously the setting of the Phillips paranleter and enhancement coefficient of JONSWAP spectrum and initial random phases is very important for the formation of freak waves. The way to increase the generation efficiency of freak waves thsough changing the involved parameters is also presented.
基金The Qingdao National Laboratory for Marine Science and Technology under contract No.QNLM20160RP0402the National Natural Science Foundation of China under contract Nos 51522902 and 51579040+1 种基金the Fundamental Research Funds for the Central Universities under contract No.DUT17ZD233the Ministry of Industry and Information Technology of China under contract No.[2016]22
文摘An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height H& and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger H[x tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves.
文摘An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters. The data used to calibrate and validate the ANN models are obtained from an experiment. Multilayer feed-forward neural networks that are trained with the back-propagation algorithm are constructed by use of three design parameters (i.e. wave surface height, horizontal and vertical velocities) as network inputs and the ultimate inline force as the only output. A sensitivity analysis is conducted on the ANN models to investigate the generalization ability (robustness) of the developed models, and predictions from the ANN models are compared to those obtained from Morison equation which is usually used to determine inline force as a computational method. With the existing data, it is found that least square method (LSM) gives less error in determining drag and inertia coefficients of Morison equation. With regard to the predicted results agreeing with calculations achieved from Morison equation that used LSM method, neural network has high efficiency considering its convenience, simplicity and promptitude. The outcome of this study can contribute to reducing the errors in predicting hydrodynamic inline force by use of ANN and to improve the reliability of that in comparison with the more practical state of Morison equation. Therefore, this method can be applied to relevant engineering projects with satisfactory results
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金Project supported by the National Science Fund for Distinguished Young Scholars (Grant No 40425015), the Cooperative Project of Chinese Academy Sciences and the China National 0ffshore oil Corporation ("Behaviours of internal waves and their roles on the marine structures") and the National Natural Science Foundation of China (Grant No10461005).
文摘This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.
文摘In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.
文摘According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order random model of the unified wave motion process for nonlinear irregular waves and their interactions with vertical wall in uniform current is formulated, the corresponding theoretical nonlinear spectrum is derived, and the digital simulation model suitable to the use of the FFT (Fast Fourier Transform) algorithm is also given. Simulations of wave surface, wave pressure, total wave pressure and its moment are performed. The probability properties and statistical characteristics of these realizations are tested, which include the verifications of normality for linear process and of non-normality for nonlinear process; the consistencies of the theoretical spectra with simulated ones; the probability properties of apparent characteristics, such as amplitudes, periods, and extremes (maximum and minimum, positive and negative extremes). The statistical analysis and comparisons demonstrate that the proposed theoretical and computing models are realistic and effective, and estimated spectra are in good agreement with the theoretical ones, and the probability properties of the simulated waves are similar to those of the sea waves. At the same time, the simulating computation can be completed rapidly and easily.
基金supported by the National Natural Science Foundation of China(Grant Nos.50479053and10672034)the Program for Changjiang Scholars and Innovative Research Teamin University,and thefoundationfordoctoral degree education of the Education Ministry of China
文摘New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.