A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps du...A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system.展开更多
In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.Th...In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process.展开更多
For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-te...For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-temperature heat source for conducting MED and select the optimal temperature for it. Both the MED and the low-temperature heat sources studied in this paper were from a typical refinery located in northwestern China. Besides, a new methodology to evaluate heat sources as the optimal candidate was proposed for MED based on the grey system theory. Five process units, which included 18 fluids of the refinery, were named as the evaluation projects. Three factors, which included safety effects, total costs and characteristics of low-temperature heat sources were determined as the evaluation indexes, the values of which were established through the analyses. The results obtained through the grey correlation analyses have revealed that the grey correlation degrees of these units were 0.661(AVDU), 0.732 (#1 FCCU), 0.618 (#2 FCCU), 0.535 (#1 DCU), and 0.572 (#2 DCU), respectively. Thus, the optimal heat source was provided from #1 FCCU. Through further analyses of the fluids from #1 FCCU, the grey correlation degrees of the fluids were 0.597 (oil and gas at top of tower), 0.714 (recycle oil and gas), and 0.512 (diesel), respectively. Thus, the optimal heat source was the oil and gas recycle stream.展开更多
In the study on functional low-carbon ergonomic validity in buildings,ergonomic validity is different from resource validity which is easy for quantitative analysis. To eliminate the complexity and uncertainty impacts...In the study on functional low-carbon ergonomic validity in buildings,ergonomic validity is different from resource validity which is easy for quantitative analysis. To eliminate the complexity and uncertainty impacts of human factors on quantitative study,it proposes a method of building a parameter of ergonomic validity—multi-effect time by using cardiotachometer to record heart rate change,being used to evaluate the functional low-carbon ergonomic validity targeting at the ontological characteristics of kitchen. This method is used to determine the physical consumption intensity( multi-effect) through heart rate incremental relation based on the principles of physiology and ergonomics,and to confirm the ergonomic validity of environmental factors by the time to complete standard work as well as multi-effect quantitative analysis. The test results show that,under the kitchen operating conditions,the multi-effect( ME) can properly reflect the real-time status of the operator and is easily operated; the parameters obtained are not significantly related to the physiological status of the operator,and multi-effect time( MT) is sensitive to the physical consumption brought about to the operator due to kitchen environmental factors; thus,it can be taken as an objective index,which is simple and easy to operate in residential kitchen functional low-carbon evaluation.展开更多
The paper bulids a countercurrent multi-effect drying process model which can be expressed as a linear programming(LP) problem with the minimum total energy consumption as target function. Based on the model it can be...The paper bulids a countercurrent multi-effect drying process model which can be expressed as a linear programming(LP) problem with the minimum total energy consumption as target function. Based on the model it can be conventient to solve the heat load , degree of drying and other drying parameters of each effect. And it realizes the mathematical simulation an analysis of multi-effect drying process. Such process not only reuses the secondary steam but also utilizes the high energy grade. Drying silica sand using 1-effect drying to 5-effect drying is presented as an example. The energy consumption and energy saving rate are compared by using co-current multi-effect drying and countercurrent multi-effect drying. As a summary, the countercurrent multi-effect drying is better than co-current drying. Considered the equipment investment and energy conservation, the study also concluded that the countercurrent 4-effect drying is the optimum selection, and it can save 57.6% energy compared to countercurrent 1-effect drying.展开更多
Broad beans were divided into six groups and implanted with N+ beam of 30 KeV, 8 × 1016/cm2 per time for various radiating times respectively. Besides the statistics of its vigor of germination, the M1 root-tip c...Broad beans were divided into six groups and implanted with N+ beam of 30 KeV, 8 × 1016/cm2 per time for various radiating times respectively. Besides the statistics of its vigor of germination, the M1 root-tip cells of these broad beans were systematically analyzed on their changes in mitotic percentage, morphology and behavior of chromosomes, along with the structure o f cytoskeletons, including microtubule and intermediate filament. Based on all results of these studies, our opinions have been expressed in the report on the mechanism of low-energy N+ beams effecting on higher dicotyledons such as broad beau.展开更多
In this paper, through two case studies, evaporation systems are considered in the context of overall process, and then are optimized to obtain energy-saving effect. The possible evaporation schemes are given when int...In this paper, through two case studies, evaporation systems are considered in the context of overall process, and then are optimized to obtain energy-saving effect. The possible evaporation schemes are given when integrated with the background process and how to optimize the evaporator is shown. From the case studies, it can be seen that sometimes incomplete integration and heat pump evaporation are better than complete integration so should be considered as candidate retrofit schemes.展开更多
The cycling stability of SnO_(2)anode as lithium-ion battery is poor due to volume expansion.Polyimide coatings can effectively confine the expansion of SnO_(2).However,linear polyimides are easily dissolved in ester ...The cycling stability of SnO_(2)anode as lithium-ion battery is poor due to volume expansion.Polyimide coatings can effectively confine the expansion of SnO_(2).However,linear polyimides are easily dissolved in ester electrolytes and their carbonyls is not fully utilized during charging/discharging process.Herein,the SnO_(2)enclosed with anthraquinone-based polyimide/reduced graphene oxide composite was prepared by self-assembly.Carbonyls from the anthraquinone unit provide fully available active sites to react with Li^(+),improving the utilization of carbonyl in the polyimide.More exposed carbonyl active sites promote the conversion of Sn to SnO_(2)with electrode gradual activation,leading to an increase in reversible capacity during the charge/discharge cycle.In addition,the introduction of reduced graphene oxide cannot only improve the stability of polyimide in the electrolyte,but also build fast ion and electron transport channels for composite electrodes.Due to the multiple effects of anthraquinone-based polyimide and the synergistic effect of reducing graphene oxide,the composite anode exhibits a maximum reversible capacity of 1266 mAh·g^(−1) at 0.25 A·g^(−1),and maintains an excellent specific capacity of 983 mAh·g^(−1) after 200 cycles.This work provides a new strategy for the synergistic modification of SnO_(2).展开更多
Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Fewstudies have ...Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Fewstudies have integrated these effect, s to prioritize control measures for VOC.s sources. In this study,we developed a multi-effects evaluation methodology based on updated emission inventories and source profiles, by combining the ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were estimated, the contribution and sharing of source to each of these adverse effects were calculated. Weightings were given to the three adverse effects by expert scoring, and then the integrated effect was determined. Taking 2012 as the base year,solvent use and industrial process were found to be the most important anthropogenic sources, accounting for 24.2% and 23.1% of the integrated effect, respectively, followed by biomass burning, transportation, and fossil fuel combustion, each had a similar contribution ranging from 16.7% to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiberproducts, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five provinces contributing the largest integrated effects. For the VOC species from emissions showed the largest contributions were styrene, toluene, ethylene, benzene, and m/p-xylene.展开更多
Susceptibility and morphological characteristics of crevice corrosion for SS316, SS904L, SS254sMo and SS2507 in thesimulated low-temperature multi-effect distillation environment were investigated by cyclic polarizati...Susceptibility and morphological characteristics of crevice corrosion for SS316, SS904L, SS254sMo and SS2507 in thesimulated low-temperature multi-effect distillation environment were investigated by cyclic polarization test, scanningelectron microscope and laser microscope. The results show that the crevice corrosion resistance of four kinds of stainlesssteel is ranked as SS254sMo ≈ SS2507 〉 SS316 〉 SS904L. There are "cover" structures over the edge of active crevicecorrosion regions of SS904L, SS254sMo and SS2507, but SS316 is an exception. Galvanic corrosion characteristicsappeared in the crevice of duplex supper stainless steel SS2507.展开更多
基金The Key Basic Program of Science and Technology Commission of Shanghai Municipality(No.08110511700)the ShanghaiLeading Academic Discipline Program(No.S30503)
文摘A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system.
基金the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization of China for its financial supportthe financial support of National Natural Science Foundation of China(Grant No.21576168)Science and Technology Cooperation Fund of Sichuan University-Panzhihua(No:2018CDPZH-23-SCU)。
文摘In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process.
基金the Natural Science Foundation(Grant No.51178463)the Fundamental Research Funds for the Central Universities(10CX04018A)of China for financial support of this studythe Environment and Safety Technology Center of China University of Petroleum for its technical and logistical assistance
文摘For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-temperature heat source for conducting MED and select the optimal temperature for it. Both the MED and the low-temperature heat sources studied in this paper were from a typical refinery located in northwestern China. Besides, a new methodology to evaluate heat sources as the optimal candidate was proposed for MED based on the grey system theory. Five process units, which included 18 fluids of the refinery, were named as the evaluation projects. Three factors, which included safety effects, total costs and characteristics of low-temperature heat sources were determined as the evaluation indexes, the values of which were established through the analyses. The results obtained through the grey correlation analyses have revealed that the grey correlation degrees of these units were 0.661(AVDU), 0.732 (#1 FCCU), 0.618 (#2 FCCU), 0.535 (#1 DCU), and 0.572 (#2 DCU), respectively. Thus, the optimal heat source was provided from #1 FCCU. Through further analyses of the fluids from #1 FCCU, the grey correlation degrees of the fluids were 0.597 (oil and gas at top of tower), 0.714 (recycle oil and gas), and 0.512 (diesel), respectively. Thus, the optimal heat source was the oil and gas recycle stream.
基金Sponsored by the "Twelfth Five-year" National Science and Technology Supoort Programe(Grant No.2011BAJ05B02-03)
文摘In the study on functional low-carbon ergonomic validity in buildings,ergonomic validity is different from resource validity which is easy for quantitative analysis. To eliminate the complexity and uncertainty impacts of human factors on quantitative study,it proposes a method of building a parameter of ergonomic validity—multi-effect time by using cardiotachometer to record heart rate change,being used to evaluate the functional low-carbon ergonomic validity targeting at the ontological characteristics of kitchen. This method is used to determine the physical consumption intensity( multi-effect) through heart rate incremental relation based on the principles of physiology and ergonomics,and to confirm the ergonomic validity of environmental factors by the time to complete standard work as well as multi-effect quantitative analysis. The test results show that,under the kitchen operating conditions,the multi-effect( ME) can properly reflect the real-time status of the operator and is easily operated; the parameters obtained are not significantly related to the physiological status of the operator,and multi-effect time( MT) is sensitive to the physical consumption brought about to the operator due to kitchen environmental factors; thus,it can be taken as an objective index,which is simple and easy to operate in residential kitchen functional low-carbon evaluation.
文摘The paper bulids a countercurrent multi-effect drying process model which can be expressed as a linear programming(LP) problem with the minimum total energy consumption as target function. Based on the model it can be conventient to solve the heat load , degree of drying and other drying parameters of each effect. And it realizes the mathematical simulation an analysis of multi-effect drying process. Such process not only reuses the secondary steam but also utilizes the high energy grade. Drying silica sand using 1-effect drying to 5-effect drying is presented as an example. The energy consumption and energy saving rate are compared by using co-current multi-effect drying and countercurrent multi-effect drying. As a summary, the countercurrent multi-effect drying is better than co-current drying. Considered the equipment investment and energy conservation, the study also concluded that the countercurrent 4-effect drying is the optimum selection, and it can save 57.6% energy compared to countercurrent 1-effect drying.
文摘Broad beans were divided into six groups and implanted with N+ beam of 30 KeV, 8 × 1016/cm2 per time for various radiating times respectively. Besides the statistics of its vigor of germination, the M1 root-tip cells of these broad beans were systematically analyzed on their changes in mitotic percentage, morphology and behavior of chromosomes, along with the structure o f cytoskeletons, including microtubule and intermediate filament. Based on all results of these studies, our opinions have been expressed in the report on the mechanism of low-energy N+ beams effecting on higher dicotyledons such as broad beau.
文摘In this paper, through two case studies, evaporation systems are considered in the context of overall process, and then are optimized to obtain energy-saving effect. The possible evaporation schemes are given when integrated with the background process and how to optimize the evaporator is shown. From the case studies, it can be seen that sometimes incomplete integration and heat pump evaporation are better than complete integration so should be considered as candidate retrofit schemes.
基金The authors are grateful to the financial support of the Hunan Provincial Natural Science Foundation of China(Grant No.2022JJ30604).
文摘The cycling stability of SnO_(2)anode as lithium-ion battery is poor due to volume expansion.Polyimide coatings can effectively confine the expansion of SnO_(2).However,linear polyimides are easily dissolved in ester electrolytes and their carbonyls is not fully utilized during charging/discharging process.Herein,the SnO_(2)enclosed with anthraquinone-based polyimide/reduced graphene oxide composite was prepared by self-assembly.Carbonyls from the anthraquinone unit provide fully available active sites to react with Li^(+),improving the utilization of carbonyl in the polyimide.More exposed carbonyl active sites promote the conversion of Sn to SnO_(2)with electrode gradual activation,leading to an increase in reversible capacity during the charge/discharge cycle.In addition,the introduction of reduced graphene oxide cannot only improve the stability of polyimide in the electrolyte,but also build fast ion and electron transport channels for composite electrodes.Due to the multiple effects of anthraquinone-based polyimide and the synergistic effect of reducing graphene oxide,the composite anode exhibits a maximum reversible capacity of 1266 mAh·g^(−1) at 0.25 A·g^(−1),and maintains an excellent specific capacity of 983 mAh·g^(−1) after 200 cycles.This work provides a new strategy for the synergistic modification of SnO_(2).
基金This study was funded by the Natural Science Foundation for Outstanding Young Scholars (Grant No. 41125018) and Natural Science Foundation Key Project (Grant No. 41330635). The fimding source was involved in the data collection of this paper.
文摘Volatile organic compounds (VOCs) play important roles in the atmosphere via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Fewstudies have integrated these effect, s to prioritize control measures for VOC.s sources. In this study,we developed a multi-effects evaluation methodology based on updated emission inventories and source profiles, by combining the ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were estimated, the contribution and sharing of source to each of these adverse effects were calculated. Weightings were given to the three adverse effects by expert scoring, and then the integrated effect was determined. Taking 2012 as the base year,solvent use and industrial process were found to be the most important anthropogenic sources, accounting for 24.2% and 23.1% of the integrated effect, respectively, followed by biomass burning, transportation, and fossil fuel combustion, each had a similar contribution ranging from 16.7% to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiberproducts, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five provinces contributing the largest integrated effects. For the VOC species from emissions showed the largest contributions were styrene, toluene, ethylene, benzene, and m/p-xylene.
基金supported by the National High Technology Research and Development Program(‘‘863’’ Program)of China(No.2015AA034301)the National Natural Science Foundation of China(No.51501201)
文摘Susceptibility and morphological characteristics of crevice corrosion for SS316, SS904L, SS254sMo and SS2507 in thesimulated low-temperature multi-effect distillation environment were investigated by cyclic polarization test, scanningelectron microscope and laser microscope. The results show that the crevice corrosion resistance of four kinds of stainlesssteel is ranked as SS254sMo ≈ SS2507 〉 SS316 〉 SS904L. There are "cover" structures over the edge of active crevicecorrosion regions of SS904L, SS254sMo and SS2507, but SS316 is an exception. Galvanic corrosion characteristicsappeared in the crevice of duplex supper stainless steel SS2507.