The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced...The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced by pressure in the three crystallographic directions of the sample.In this study,we introduce a novel and effective method that addresses these technical challenges.This method is anticipated to offer a valuable foundation for high-pressure investigations on quantum materials,particularly those with anisotropic layered structures.展开更多
Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambria...Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.展开更多
Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization ...Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.展开更多
The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil...The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.展开更多
Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wen...Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wenner,Schlumberger,Pole-pole and Dipole-dipole the authors established the model,by studying the result of the forward numerical simulation modeling and inverse modeling,and analyzed the differences among the different forms of detection devices.展开更多
The recent report of superconductivity in nitrogen-doped lutetium hydride(Lu-H-N)at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors.However,the failure of scientists worldwide to i...The recent report of superconductivity in nitrogen-doped lutetium hydride(Lu-H-N)at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors.However,the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim.In this work,using a reliable experimental protocol,we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature.With quantitative comparison of the temperaturedependent resistance between Lu-H-N and the pure lutetium before reaction,we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity.Herein,we also briefly discuss other issues recently raised in relation to the Lu-H-N system.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug re...Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug resistance often leads to recurrence,underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates.Artemisinin(ART)has demonstrated efficacy in inhibiting the growth of drug-resistant cells,positioning art as a viable option for counteracting endocrine resistance.This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation.Five characterized genes(ar,cdkn1a,erbb2,esr1,hsp90aa1)and seven drug-disease crossover genes(cyp2e1,rorc,mapk10,glp1r,egfr,pgr,mgll)were identified using WGCNA crossover analysis.Subsequent functional enrichment analyses were conducted.Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and-sensitized patients.scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells,suggesting artemisinin’s specific impact on tumor cells in estrogen receptor(ER)-positive BC tissues.Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes.These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.展开更多
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o...One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.展开更多
Sesame Fusarium wilt(SFW),caused by Fusarium oxysporum f.sp.sesami(Fos),is one of the most devastating diseases affecting sesame cultivation.Deciphering the genetic control of SFW resistance is pivotal for effective d...Sesame Fusarium wilt(SFW),caused by Fusarium oxysporum f.sp.sesami(Fos),is one of the most devastating diseases affecting sesame cultivation.Deciphering the genetic control of SFW resistance is pivotal for effective disease management in sesame.An inheritance study on a cross between the highly resistant variety Yuzhi 11 and the highly susceptible accession Sp1 using a Fos pathogenicity group 1 isolate indicated that resistance was conferred by a single dominant allele.The target locus was located in a 1.24 Mb interval on chromosome 3 using a combination of cross-population association mapping and bulked segregant analysis.Fine genetic mapping further narrowed the interval between 21,350 and 21,401 kb.The locus Sindi_0812400 was identified as the SFW resistance gene and officially designated SiRLK1.This gene encodes a specific malectin/receptor-like protein kinase with three putative tandem kinase domains and is considered a kinase fusion protein.Sequence analysis revealed that a high proportion(49.44%)of variants within the locus was located within the kinase domainⅢ,and several of which were evidently associated with the diversity in SFW response,indicating the critical role of kinase domainⅢin expression of disease resistance.These findings provide valuable information for further functional analysis of SFW resistance genes and marker-assisted resistance breeding in sesame.展开更多
The electrical resistivity method was verified as an optional technique to monitor the change of mesostructure of saturated soils.To investigate the change laws of resistivity and analyze the reliquefaction meso-mecha...The electrical resistivity method was verified as an optional technique to monitor the change of mesostructure of saturated soils.To investigate the change laws of resistivity and analyze the reliquefaction meso-mechanism during the consecutive liquefaction process,five successive impact liquefaction tests were performed in a one-dimensional cubical chamber.The resistivity variation and excess pore water pressure(EPWP)were measured.The results indicate that the excess pore water pressure experienced four stages:quick increase stage,slow dissipation stage,rapid dissipation stage,and stability stage.Meanwhile,a swift decrease of resistivity emerged before the start of the rapid dissipation stage of EPWP,and then an increasing trend of resistivity is demonstrated with the densification of soil.It is proved that the vertical pore connectivity of liquefied sand is better than its random deposit state,based on a comparative study of porosity calculated from the settlement and resistivity of sand after each test.展开更多
Objective:Circular ribose nudeic acids(circRNAs)are implicated in tumor progression and drug resistance of prostate cancer(PCa).The current work explored the function of circ_0005203(aircTHSD4)in the malignancy and do...Objective:Circular ribose nudeic acids(circRNAs)are implicated in tumor progression and drug resistance of prostate cancer(PCa).The current work explored the function of circ_0005203(aircTHSD4)in the malignancy and docetaxel(DTX)resistance of PCa.Methods:circTHSD4 expression within PCa as well as matched non-carcinoma samples was measured through real time reverse transcription quantitative polymerase chain reaction(RT-qPCR).In addition,a subcellular fraction assay was conducted to determine circTHSD4 subcellular localization within PCa cells.In addition,we performed a Western blot(WB)assay to detect high mobility.group A2 protein(HMGA2)levels.Besides,functional associations of two molecules were investigated through dual luciferase reporter assay.Cell Counting Kit(CCK)-8,colony formation together with Transwell assay was conducted to assess malignant phenotypes of PCa cells,whereas flow cytometry was performed to determine cell apoptosis.Furthermore,a xenograft mouse model was constructed to verify the effect of circTHSD4 on the carcinogenesis of PCa cells.Results:According to RT-qPCR results,circTHSD4 was up-regulated within PCa tissues and cells,which predicted the dismal prognostic outcome of PCa cases.circTHSD4 silencing within PCa cells markedly suppressed cell growth,migration,and colony fomation.circTHSD4 silencing remarkably elevated PCa cell apoptosis and carcinogenesis within the xenograft model.Further,circTHSD4 silencing enhanced docetaxel(DTX)sensitivity in PCa cells.Furthermore,we demonstrated that circTHSD4 modulated the malignancy of PCa cells by regulating HMGA2 expression through sponging miR 203.Conclusion:Together,our findings suggest that cirCTHSD4 overexpression could promote the malignant phenotype and DTX resistance in PCa through the regulation of the miR 203/HMGA2 axis.展开更多
Soil conductivity is responsible for its aggressive behavior to metallic objects either in contact or buried in the ground. Rapid deterioration and eventual rupture of pipelines leading ultimately to crude oil spillag...Soil conductivity is responsible for its aggressive behavior to metallic objects either in contact or buried in the ground. Rapid deterioration and eventual rupture of pipelines leading ultimately to crude oil spillages have been of economic as well as environmental concern. Although many factors contribute to soil resistivity, these relationships have hardly been quantitatively expressed. This paper explores the factors affecting soil resistivity firstly by matching the spatial regional distribution with each of the identified factors of influence, including ground elevation soil type, depth to water table and undrained strength. 183 Vertical Electrical Sounding VES with the ABEM SAS 1000, using Schlumberger electrode configuration were carried out along a pipeline route to generate resistivity distribution across a linear alignment that traverses three geomorphic sub-environments in the Niger Delta Region. The apparent resistivity values averaged over depths of 3 m and 10 m were plotted against the co-ordinates using Surfer-16 and overlaid on Google earth Pro to produce a spatial distribution with enhanced location visibility. The results show that apparent resistivity is influenced by depth to water table with lower values in areas of shallow water table occurrence. Furthermore, it is shown that changes in resistivity below the water table are more due to variation in soil type. Within a soil type above the water table, soil resistivity increases monotonically with depth until the depth of probe extends to a different soil horizon. Results of this study provide guidance as to what ground resistivity to expect in different part of the delta as well as provide valuable information to assess the risks to assets either as a means of prioritizing maintenance or of improving design for new installations in the Niger Delta Region.展开更多
Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developi...Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developing AD.Insulin,while primarily known for its role in regulating blood sugar,also plays a vital role in protecting brain functions.Insulin resistance(IR),especially prevalent in type 2 diabetes,is believed to play a significant role in AD's development.When insulin signalling becomes dysfunctional,it can negatively affect various brain functions,making individuals more susceptible to AD's defining features,such as the buildup of beta-amyloid plaques and tau protein tangles.Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD.This review aims to explore the relationship between DM and AD,with a focus on the role of IR.It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR.Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.展开更多
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey so...Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.展开更多
As a metal alloy,NiCr films have a relatively high resistivity and low temperature coefficient of resistance (TCR) and are widely used in electronic components and sensors.However,the resistivity of pure NiCr is insuf...As a metal alloy,NiCr films have a relatively high resistivity and low temperature coefficient of resistance (TCR) and are widely used in electronic components and sensors.However,the resistivity of pure NiCr is insufficient for high-resistance and highly stable film resistors.In this study,a quaternary NiCrAlSi target (47:33:10:10,wt.%) was successfully used to prepare resistor films with resistivities ranging from 1000 to 10 000μΩcm and TCR within±100 ppm/K.An oxygen flow was introduced during the sputtering process.The films exhibit hightemperature stability at 450℃.The films were analyzed using Auger electron spectroscopy,x-ray diffraction,time-of-flight secondary-ion mass spectrometry,and x-ray photoelectron spectroscopy.The results show that the difference in the oxide proportion of the films caused the differences in resistivity.The near-zero TCR values were considered to be due to the competition between silicon and other metals.This study provides new insights into the electrical properties of NiCr-based films containing Si,which will drive the manufacturing of resistors with high resistivity and zero TCR.展开更多
BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness o...BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.展开更多
Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a ty...Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)the NSF of China(Grant Nos.U2032214 and 12104487).
文摘The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced by pressure in the three crystallographic directions of the sample.In this study,we introduce a novel and effective method that addresses these technical challenges.This method is anticipated to offer a valuable foundation for high-pressure investigations on quantum materials,particularly those with anisotropic layered structures.
文摘Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.
基金National Natural Science Foundation of China(Grant No.11872013)for supporting this project.
文摘Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.
文摘The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2007AA06Z215)
文摘Multi-electrodes Resistivity Imaging Survey(MRIS)is an array method of electrical survey.In practice how to choose a reasonable array is the key to get reliable survey results.Based on four methods of MRIS such as Wenner,Schlumberger,Pole-pole and Dipole-dipole the authors established the model,by studying the result of the forward numerical simulation modeling and inverse modeling,and analyzed the differences among the different forms of detection devices.
文摘The recent report of superconductivity in nitrogen-doped lutetium hydride(Lu-H-N)at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors.However,the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim.In this work,using a reliable experimental protocol,we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature.With quantitative comparison of the temperaturedependent resistance between Lu-H-N and the pure lutetium before reaction,we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity.Herein,we also briefly discuss other issues recently raised in relation to the Lu-H-N system.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
基金supported by the National Natural Science Foundation of China(81973839)High Level Chinese Medical Hospital Promotion Project-Special Project on Formulation R&D and New Drug Translation for Medical Institutions(HLCMHPP2023037)Upgrading the Development and Promotion of about 30 Integrated Chinese and Western Medicine Diagnosis and Treatment Programs(Guidelines for the Diagnosis and Treatment of Breast Cancer with the Combination of Traditional Chinese Medicine and Western Medicine)(ZYZB-2022-798).
文摘Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug resistance often leads to recurrence,underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates.Artemisinin(ART)has demonstrated efficacy in inhibiting the growth of drug-resistant cells,positioning art as a viable option for counteracting endocrine resistance.This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation.Five characterized genes(ar,cdkn1a,erbb2,esr1,hsp90aa1)and seven drug-disease crossover genes(cyp2e1,rorc,mapk10,glp1r,egfr,pgr,mgll)were identified using WGCNA crossover analysis.Subsequent functional enrichment analyses were conducted.Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and-sensitized patients.scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells,suggesting artemisinin’s specific impact on tumor cells in estrogen receptor(ER)-positive BC tissues.Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes.These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.
文摘One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions.
基金This work was supported by China Agriculture Research System(CARS-14)the Key Research and Development Project of Henan Province(221111520400)+3 种基金the Henan Provincial Science and Technology Research Project(222102110081)the Zhongyuan Science and Technology Innovation Leading Talent Plan(214200510020)the Key Research Project of the Shennong Laboratory(SN012022-04)the Fund for Distinguished Young Scholars from Henan Academy of Agricultural Sciences(2022JQ01).
文摘Sesame Fusarium wilt(SFW),caused by Fusarium oxysporum f.sp.sesami(Fos),is one of the most devastating diseases affecting sesame cultivation.Deciphering the genetic control of SFW resistance is pivotal for effective disease management in sesame.An inheritance study on a cross between the highly resistant variety Yuzhi 11 and the highly susceptible accession Sp1 using a Fos pathogenicity group 1 isolate indicated that resistance was conferred by a single dominant allele.The target locus was located in a 1.24 Mb interval on chromosome 3 using a combination of cross-population association mapping and bulked segregant analysis.Fine genetic mapping further narrowed the interval between 21,350 and 21,401 kb.The locus Sindi_0812400 was identified as the SFW resistance gene and officially designated SiRLK1.This gene encodes a specific malectin/receptor-like protein kinase with three putative tandem kinase domains and is considered a kinase fusion protein.Sequence analysis revealed that a high proportion(49.44%)of variants within the locus was located within the kinase domainⅢ,and several of which were evidently associated with the diversity in SFW response,indicating the critical role of kinase domainⅢin expression of disease resistance.These findings provide valuable information for further functional analysis of SFW resistance genes and marker-assisted resistance breeding in sesame.
基金Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019D04the National Natural Science Foundation of China under Grant No.51978317+1 种基金Natural Science Foundation of Jiangsu Province under Grant No.BK20200996the China Postdoctoral Science Foundation under Grant No.2020M681566。
文摘The electrical resistivity method was verified as an optional technique to monitor the change of mesostructure of saturated soils.To investigate the change laws of resistivity and analyze the reliquefaction meso-mechanism during the consecutive liquefaction process,five successive impact liquefaction tests were performed in a one-dimensional cubical chamber.The resistivity variation and excess pore water pressure(EPWP)were measured.The results indicate that the excess pore water pressure experienced four stages:quick increase stage,slow dissipation stage,rapid dissipation stage,and stability stage.Meanwhile,a swift decrease of resistivity emerged before the start of the rapid dissipation stage of EPWP,and then an increasing trend of resistivity is demonstrated with the densification of soil.It is proved that the vertical pore connectivity of liquefied sand is better than its random deposit state,based on a comparative study of porosity calculated from the settlement and resistivity of sand after each test.
基金Fujian Provincial Health and Middleaged and Young Backbone Talents Training Project“The role and Mechanism of C53 in mcRPC Treatment of Drug Resistance”(2019-ZQN-77).
文摘Objective:Circular ribose nudeic acids(circRNAs)are implicated in tumor progression and drug resistance of prostate cancer(PCa).The current work explored the function of circ_0005203(aircTHSD4)in the malignancy and docetaxel(DTX)resistance of PCa.Methods:circTHSD4 expression within PCa as well as matched non-carcinoma samples was measured through real time reverse transcription quantitative polymerase chain reaction(RT-qPCR).In addition,a subcellular fraction assay was conducted to determine circTHSD4 subcellular localization within PCa cells.In addition,we performed a Western blot(WB)assay to detect high mobility.group A2 protein(HMGA2)levels.Besides,functional associations of two molecules were investigated through dual luciferase reporter assay.Cell Counting Kit(CCK)-8,colony formation together with Transwell assay was conducted to assess malignant phenotypes of PCa cells,whereas flow cytometry was performed to determine cell apoptosis.Furthermore,a xenograft mouse model was constructed to verify the effect of circTHSD4 on the carcinogenesis of PCa cells.Results:According to RT-qPCR results,circTHSD4 was up-regulated within PCa tissues and cells,which predicted the dismal prognostic outcome of PCa cases.circTHSD4 silencing within PCa cells markedly suppressed cell growth,migration,and colony fomation.circTHSD4 silencing remarkably elevated PCa cell apoptosis and carcinogenesis within the xenograft model.Further,circTHSD4 silencing enhanced docetaxel(DTX)sensitivity in PCa cells.Furthermore,we demonstrated that circTHSD4 modulated the malignancy of PCa cells by regulating HMGA2 expression through sponging miR 203.Conclusion:Together,our findings suggest that cirCTHSD4 overexpression could promote the malignant phenotype and DTX resistance in PCa through the regulation of the miR 203/HMGA2 axis.
文摘Soil conductivity is responsible for its aggressive behavior to metallic objects either in contact or buried in the ground. Rapid deterioration and eventual rupture of pipelines leading ultimately to crude oil spillages have been of economic as well as environmental concern. Although many factors contribute to soil resistivity, these relationships have hardly been quantitatively expressed. This paper explores the factors affecting soil resistivity firstly by matching the spatial regional distribution with each of the identified factors of influence, including ground elevation soil type, depth to water table and undrained strength. 183 Vertical Electrical Sounding VES with the ABEM SAS 1000, using Schlumberger electrode configuration were carried out along a pipeline route to generate resistivity distribution across a linear alignment that traverses three geomorphic sub-environments in the Niger Delta Region. The apparent resistivity values averaged over depths of 3 m and 10 m were plotted against the co-ordinates using Surfer-16 and overlaid on Google earth Pro to produce a spatial distribution with enhanced location visibility. The results show that apparent resistivity is influenced by depth to water table with lower values in areas of shallow water table occurrence. Furthermore, it is shown that changes in resistivity below the water table are more due to variation in soil type. Within a soil type above the water table, soil resistivity increases monotonically with depth until the depth of probe extends to a different soil horizon. Results of this study provide guidance as to what ground resistivity to expect in different part of the delta as well as provide valuable information to assess the risks to assets either as a means of prioritizing maintenance or of improving design for new installations in the Niger Delta Region.
文摘Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developing AD.Insulin,while primarily known for its role in regulating blood sugar,also plays a vital role in protecting brain functions.Insulin resistance(IR),especially prevalent in type 2 diabetes,is believed to play a significant role in AD's development.When insulin signalling becomes dysfunctional,it can negatively affect various brain functions,making individuals more susceptible to AD's defining features,such as the buildup of beta-amyloid plaques and tau protein tangles.Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD.This review aims to explore the relationship between DM and AD,with a focus on the role of IR.It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR.Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012,42230710)Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,Chinese Academy of Sciences(Grant No.xbzg-zdsys-202107).
文摘Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.
基金support from the Innovation Foundation of the Shanghai Institute of Technical Physics,Chinese Academy of Sciences。
文摘As a metal alloy,NiCr films have a relatively high resistivity and low temperature coefficient of resistance (TCR) and are widely used in electronic components and sensors.However,the resistivity of pure NiCr is insufficient for high-resistance and highly stable film resistors.In this study,a quaternary NiCrAlSi target (47:33:10:10,wt.%) was successfully used to prepare resistor films with resistivities ranging from 1000 to 10 000μΩcm and TCR within±100 ppm/K.An oxygen flow was introduced during the sputtering process.The films exhibit hightemperature stability at 450℃.The films were analyzed using Auger electron spectroscopy,x-ray diffraction,time-of-flight secondary-ion mass spectrometry,and x-ray photoelectron spectroscopy.The results show that the difference in the oxide proportion of the films caused the differences in resistivity.The near-zero TCR values were considered to be due to the competition between silicon and other metals.This study provides new insights into the electrical properties of NiCr-based films containing Si,which will drive the manufacturing of resistors with high resistivity and zero TCR.
基金Supported by Hebei Provincial Health Commission Youth Science and Technology Project,No.20210027.
文摘BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.
文摘Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers.