期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Federated double DQN based multi-energy microgrid energy management strategy considering carbon emissions 被引量:1
1
作者 Yanhong Yang Tengfei Ma +3 位作者 Haitao Li Yiran Liu Chenghong Tang Wei Pei 《Global Energy Interconnection》 EI CSCD 2023年第6期689-699,共11页
Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy man... Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy. 展开更多
关键词 multi-energy microgrid Federated learning Improved double DQN Energy conversion
下载PDF
Optimal dispatch approach for rural multi-energy supply systems considering virtual energy storage
2
作者 Yanze Xu Yunfei Mu +3 位作者 Haijie Qi Hairun Li Peng Yu Shumin Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期675-688,共14页
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys... In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS. 展开更多
关键词 Virtual energy storage Rural multi-energy supply system multi-energy coupling Optimal dispatch
下载PDF
Asymmetric cast-rolling of 1050 aluminum alloy strip under multi-energy field 被引量:2
3
作者 石琛 毛大恒 扶宗礼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2815-2823,共9页
Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were ... Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were analyzed by comparing with traditional cast-rolling. Results show that when length of cast-rolling area is 70 mm, melt temperature of head box is 670 °C, cast rolling speed is 1.3 m/min, exciting current is 10 A, center frequency is(13±1) Hz, ultrasonic power is 200 W and ultrasonic frequency is(20±0.2) kHz, the 1050 strip with the best microstructure can be prepared successfully; its center segregated layer disappears; the average grain size is reduced by about 40%; the crystal grains are distributed evenly; micro segregation decreases obviously; the precipitated phases are distributed along the grain boundaries evenly; and the tensile strength, yield strength, elongation and micro-hardness of cast-rolled strip are improved by 22.6%, 23.66%, 38.75% and 9.90%, respectively. 展开更多
关键词 aluminum alloy 1050 asymmetric cast-rolling multi-energy field microstructure mechanical properties
下载PDF
Configuration optimization model of multi-energy distributed generation system 被引量:2
4
作者 徐青山 徐敏姣 +1 位作者 李国栋 蒋菱 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期182-188,共7页
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model... To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost. 展开更多
关键词 multi-energy complementation distributed generation(DG) optimal configuration energy management comprehensive evaluation index(CEI) analytic hierarchy process(AHP)
下载PDF
The Static Stability Region of an Integrated Electricity-Gas System Considering Voltage and Gas Pressure
5
作者 Yunfei Mu Zhibin Liu +5 位作者 Xiangwei Guo Hongjie Jia Kai Hou Xiaodan Yu Bofeng Luo Hairun Li 《Engineering》 SCIE EI CAS CSCD 2024年第5期132-145,共14页
In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a ... In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching. 展开更多
关键词 Integrated electricity-gas system Static stability region Continuation multi-energy flow Multidimensional hyperplane sampling
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
6
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
Multi-energy synergistic optimization in steelmaking process based on energy hub concept 被引量:4
7
作者 Shuai Liu Sheng Xie Qi Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第8期1378-1386,共9页
The production process of iron and steel is accompanied by a large amount of energy production and consumption. Optimal scheduling and utilization of these energies within energy systems are crucial to realize a reduc... The production process of iron and steel is accompanied by a large amount of energy production and consumption. Optimal scheduling and utilization of these energies within energy systems are crucial to realize a reduction in the cost, energy use, and CO_2 emissions.However, it is difficult to model and schedule energy usage within steel works because different types of energy and devices are involved. The energy hub(EH), as a universal modeling frame, is widely used in multi-energy systems to improve its efficiency, flexibility, and reliability.This paper proposed an efficient multi-layer model based on the EH concept, which is designed to systematically model the energy system and schedule energy within steelworks to meet the energy demand. Besides, to simulate the actual working conditions of the energy devices, the method of fitting the curve is used to describe the efficiency of the energy devices. Moreover, to evaluate the applicability of the proposed model, a case study is conducted to minimize both the economic operation cost and CO_2 emissions. The optimal results demonstrated that the model is suitable for energy systems within steel works. Further, the economic operation cost decreased by 3.41%, and CO_2 emissions decreased by approximately 3.67%. 展开更多
关键词 multi-energy system energy hub OPTIMIZATION steel works
下载PDF
Optimal operation of cold–heat–electricity multi-energy collaborative system based on price demand response 被引量:4
8
作者 Yuwei Cao Liying Wang +3 位作者 Shigong Jiang Weihong Yang Ming Zeng Xiaopeng Guo 《Global Energy Interconnection》 2020年第5期430-441,共12页
In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improv... In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems. 展开更多
关键词 multi-energy collaborative system Energy hub Demand response Market elasticity Optimized operation
下载PDF
A Summary of the Main Contents and Existing Problems in the Study of Multi-Energy Coupling in Energy Internet
9
作者 Lihua Li Yuan Li +2 位作者 Xiu Yang Haini Qu Pengfei Zhang 《Energy and Power Engineering》 2017年第4期693-702,共10页
Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the syst... Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the system characteristics of coupling are becoming more and more obvious and more complicated. The modeling, analysis and control methods of traditional single flow systems have not been applied directly. Therefore, it is necessary to study the modeling of multi-energy flow coupling, the power flow analysis, optimization and control method of heterogeneous energy flow, which plays the role of multi-energy flow synergy to avoid the adverse effects of coupling. This paper summarizes the current research situation of energy Internet at home and abroad from the aspects of modeling of multi-energy flow, power flow calculation and optimal dispatching, and analyzes the existing problems in the research of these aspects. 展开更多
关键词 ENERGY Internet Integrated ENERGY System multi-energy FLOW ENERGY HUB
下载PDF
A Review of Seasonal Hydrogen Storage Multi-Energy Systems Based on Temporal and Spatial Characteristics
10
作者 Yuchen Cao Yongwen Yang +1 位作者 Xianglong Zhao Qifen Li 《Journal of Renewable Materials》 SCIE EI 2021年第11期1823-1842,共20页
The temporal and spatial characteristics of seasonal hydrogen storage will play a very important role in the coupling of multi-energy systems.This essay believes that there are several key issues worth noting in the s... The temporal and spatial characteristics of seasonal hydrogen storage will play a very important role in the coupling of multi-energy systems.This essay believes that there are several key issues worth noting in the seasonal hydrogen storage coupled multi-energy system,namely,hydrogen storage methods,coupling models,and benefit evaluation.Through research,this article innovatively divides seasonal hydrogen storage into two types:space transfer hydrogen storage technology and time transfer physical property conversion hydrogen storage technology.Then sort out the two most typical seasonal hydrogen storage multi-energy system application scenarios and their hydrogen storage unit models.Finally,it is shown that hydrogen storage methods should be selected according to different periods of time and regions,and the benefits should be evaluated before they can be used in practice.This review study is applicable to the process of coupling seasonal hydrogen storage in multi-energy systems.Hydrogen energy is used as an intermediate energy link for the selection,evaluation and modeling of the optimal selection and rational utilization. 展开更多
关键词 Temporal and spatial characteristics multi-energy system hydrogen storage technology MODELING
下载PDF
The Energy Optimization Mathematic Algorithm on Multi-energy Resource Powertrain of Fuel Cell Vehicle
11
作者 张毅 郭海涛 +1 位作者 杨林 卓斌 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期500-505,共6页
In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy ... In order to solve the core issue of the energy regulation (ER) on multi-energy resource powertrain of fuel cell vehicle, the work functions of each component were defined; the mathematical algorithm model of energy regulation was established and the relevant solution was found. This algorithm was evaluated successfully on the hardware in loop (FILL) platform under three typical urban running cycles. The results showed ER control target had been realized and the mathematical algorithm was effective and reasonable. Based on the HIL simulation, some conclusions and ER strategies were made. According to the different power component parameters and real time control request, this algorithm should be modified and calibrated for application in the actual control system. 展开更多
关键词 multi-energy powertrain fuel cell engine(FCE) energy regulation mathematic algorithm
下载PDF
Design of the Multi-Energy Complementary Distributed Energy System for Towns
12
作者 Tieyin Zhang Weihan Song Song +2 位作者 Shubao Wang Yuegang Wang Yukun Chen 《Journal of Power and Energy Engineering》 2021年第4期53-60,共8页
The multi-energy complementary distributed energy system (MCDES) covers a variety of energy forms, involves complex operation modes, and contains a wealth of control equipment and coupling links. It can realize the co... The multi-energy complementary distributed energy system (MCDES) covers a variety of energy forms, involves complex operation modes, and contains a wealth of control equipment and coupling links. It can realize the complementary and efficient use of different types of energy, which is the basic component of the physical layer of the Energy Internet. In this paper, aiming at the demand of the energy application for towns, a distributed energy system based on multi-energy complementary is constructed. Firstly, the supply condition of the distributed energy for the demonstration project is analyzed, and the architecture of the multi-energy complementary distributed energy system is established. Then the regulation strategy of the multi-energy complementary distributed energy system is proposed. Finally, an overall system scheme for the multi-energy complementary distributed energy system suitable for towns is developed, which provides a solid foundation for the development and promotion of the multi-energy complementary distributed energy system. 展开更多
关键词 multi-energy Complementary Distributed Energy System System Scheme
下载PDF
Multi-Energy Gamma-Ray Attenuations for Non-Destructive Detection of Hazardous Materials
13
作者 Kaylyn Olshanoski Chary Rangacharyulu 《Journal of Modern Physics》 2022年第1期66-80,共15页
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment... We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc. 展开更多
关键词 Non-Destructive Detection multi-energy Photons Radioactive Sources Intensity Measurements Safety and Security XCOM Calculations
下载PDF
Modeling Method of Multi-Energy Systems Based on LSTM Algorithm 被引量:1
14
作者 Di Qiu Fei Chen +2 位作者 Dong Liu Min Cao Siyang Liu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1701-1709,共9页
The development of the Energy Internet has improved the efficiency of energy utilization and promoted sustainable development of power and energy systems.The multi-energy system modeling considering the dynamic proces... The development of the Energy Internet has improved the efficiency of energy utilization and promoted sustainable development of power and energy systems.The multi-energy system modeling considering the dynamic process of transmission line is one of the key research points of Energy Internet operation control.Through the energy circuit theory,the lumped parameter model of natural gas pipelines is built and the dynamic characteristic parameters under the control instruction are extracted.Combined with dynamic characteristic parameters,the long short-term memory(LSTM)neural network is designed to fit the natural gas pipeline dynamic process into discrete linear time-varying(LTV)equations.Combined with the equations,an energy hub method is used to build a control model of industrial parks with multi-energy distribution system.Using the rolling optimal control strategy given in this paper,the model is solved by the Matlab-Yalmip solver and rolling control instructions of each energy conversion unit are obtained.Finally,the case study demonstrates that the LSTM neural network-based modeling method presented in this paper can accurately fit the dynamic process of a natural gas pipeline system.The rolling control model of the multi-energy system can improve the efficiency of energy utilization,exhibit the transmission line status constraints during the optimization control process and improve reliability of the multi-energy system operation. 展开更多
关键词 Energy hub LSTM multi-energy supply system pipeline system modeling
原文传递
Bi-level Multi-leader Multi-follower Stackelberg Game Model for Multi-energy Retail Package Optimization 被引量:1
15
作者 Hongjun Gao Hongjin Pan +4 位作者 Rui An Hao Xiao Yanhong Yang Shuaijia He Junyong Liu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期225-237,共13页
In the competitive energy market,energy retailers are facing the uncertainties of both energy price and demand,which requires them to formulate reasonable energy purchasing and selling strategies for improving their c... In the competitive energy market,energy retailers are facing the uncertainties of both energy price and demand,which requires them to formulate reasonable energy purchasing and selling strategies for improving their competitiveness in this market.Particularly,the attractive multi-energy retail packages are the key for retailers to increase their benefit.Therefore,combined with incentive means and price signals,five types of multi-energy retail packages such as peak-valley time-of-use(TOU)price package and day-night bundled price package are designed in this paper for retailers.The iterative interactions between retailers and end-users are modeled using a bi-level model of stochastic optimization based on multi-leader multi-follower(MLMF)Stackelberg game,in which retailers are leaders and end-users are followers.Retailers make decisions to maximize the profit considering the conditional value at risk(CVaR)while end-users optimize the satisfaction of both energy comfort and economy.Besides,a distributed algorithm is proposed to obtain the Nash equilibrium of above MLMF Stackelberg game model while the particle swarm optimization(PSO)algorithm and CPLEX solver are applied to solve the optimization model for each participant(retailer or end-user).Numeral results show that the designed retail packages can increase the overall profit of retailers,and the overall satisfaction of industrial users is the highest while that of residential users is the lowest after game interaction. 展开更多
关键词 Conditional value at risk(CVaR) energy retailer multi-energy retail package design multi-leader multi-follower(MLMF)Stackelberg game satisfaction
原文传递
Bi-Level Bidding and Multi-Energy Retail Packages for Integrated Energy Service Providers Considering Multi-Energy Demand Elasticity
16
作者 Xun Dou Jun Wang +1 位作者 Qinran Hu Yang Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1761-1774,共14页
How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy servic... How to effectively use the multi-energy demand elasticity of users to bid in the multi-energy market and formulate multi-energy retail packages is an urgent problem which needs to be solved by integrated energy service providers(IESPs)to attract more users and reduce operating costs.This paper presents a unified clearing of electricity and natural gas based on a bi-level bidding and multi-energy retail price formulation method for IESPs considering multi-energy demand elasticity.First,we propose an operating structure of IESPs in the wholesale and retail energy markets.The multi-energy demand elasticity model of retail-side users and a retail price model for electricity,gas,heat and cooling are established.Secondly,a bi-level bidding model for IESPs considering multi-energy demand elasticity is established to provide IESPs with wholesale-side bidding decisions and retail-side energy retail price decisions.Finally,an example is given to verify the proposed method.The results show that the method improves the total social welfare of the electricity and natural gas markets by 7.99%and the profit of IESPs by 1.40%.It can reduce the variance of the electricity,gas,and cooling load curves,especially the reduction of the variance of the electricity load curve can which reach 79.90%.It can be seen that the research in this paper has a positive effect on repairing the limitations of integrated energy trading research and improving the economics of the operation of IESPs. 展开更多
关键词 Bi-level bidding integrated energy service providers multi-energy demand elasticity multi-energy retail packages unified clearing of electricity and natural gas
原文传递
Electricity-Heat-Based Integrated Demand Response Considering Double Auction Energy Market with Multi-Energy Storage for Interconnected Areas
17
作者 Dan Wang Deyu Huang +3 位作者 Qing'e Hu Hongjie Jia Bo Liu Yang Lei 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1688-1700,共13页
With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response thr... With development of integrated energy systems and energy markets,transactive energy has received increasing attention from society and academia,and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot.Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system.Based on retail-side energy trading market,this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations.This study establishes a mechanism model of energy market participants,and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage.Finally,in the case study,a typical user energy consumption scenario in winter is selected,showing market-clearing results and demand response effects on a typical day.Impact of transmission line constraints,energy supply equipment capacity,and other factors on clearing results and global surplus are compared and analyzed,verifying the effects of the proposed method on improving global surplus,enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions. 展开更多
关键词 Double auction energy market integrated energy system interconnected energy stations multi-energy storage
原文传递
Comprehensive evaluation of multi-energy complementary ecosystem based on improved multicriteria decision-making method
18
作者 Huang Shuyi Zou Xuetong +1 位作者 Liang Huaguang Chen Jie 《Clean Energy》 EI CSCD 2024年第1期226-236,共11页
The multi-energy complementary ecosystem is an important form of the modern energy system.However,standardized evaluation criteria and the corresponding method framework have not yet been formed,resulting in unclear s... The multi-energy complementary ecosystem is an important form of the modern energy system.However,standardized evaluation criteria and the corresponding method framework have not yet been formed,resulting in unclear standards and irregular processes of its construction.To cope with this issue,a novel comprehensive evaluation framework for multi-energy complementary ecosystems is proposed in this study.First,a 5D comprehensive evaluation criteria system,including environment,economy,technology,safety and systematicness,is constructed.Then,a novel multicriteria decision-making model integrating an analytic network process,entropy and preference-ranking organization method for enrichment evaluation under an intuitional fuzzy environment is proposed.Finally,four practical cases are used for model testing and empirical analysis.The results of the research show that the unit cost of the energy supply and the internal rate of return indexes have the highest weights of 0.142 and 0.010,respectively.It means that they are the focus in the construction of a multi-energy complementary ecosystem.The net flows of four cases are 0.015,0.123,-0.132 and-0.005,indicating that cases with a variety of energy supply forms and using intelligent management and control platforms to achieve cold,heat and electrical coupling have more advantages. 展开更多
关键词 multi-energy complementary ECOSYSTEM comprehensive evaluation intuitionistic fuzzy multicriteria decision-making
原文传递
石化行业控制室承爆风险评估方法研究 被引量:10
19
作者 翟良云 赵祥迪 +2 位作者 袁纪武 王正 姜春明 《中国安全科学学报》 CAS CSCD 北大核心 2009年第6期129-134,共6页
针对传统的气体爆炸风险评估方法的不足之处,提出采用一种基于CFD技术的气体爆炸风险评估方法,对某煤气化厂区氢气爆炸对控制室造成的风险进行模拟计算与预测分析。并把研究结果与传统的TNT当量法、Multi-Energy方法预测结果进行比较。... 针对传统的气体爆炸风险评估方法的不足之处,提出采用一种基于CFD技术的气体爆炸风险评估方法,对某煤气化厂区氢气爆炸对控制室造成的风险进行模拟计算与预测分析。并把研究结果与传统的TNT当量法、Multi-Energy方法预测结果进行比较。结果表明,该方法能考虑到密集管道与复杂装置布局、气云大小等因素对爆炸超压的影响,且能用于超压波的近场预测,以及确定空间不同位置处的爆炸超压,更适用于石化行业控制室的承爆风险评估。 展开更多
关键词 控制室 爆炸评估 计算流体力学(CFD) TNT当量法 multi-energy
下载PDF
Global Dynamic Modeling of Electro-Hydraulic 3-UPS/S Parallel Stabilized Platform by Bond Graph 被引量:11
20
作者 ZHANG Lijie GUO Fei +1 位作者 LI Yongquan LU Wenjuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1176-1185,共10页
Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the ... Dynamic modeling of a parallel manipulator(PM) is an important issue. A complete PM system is actually composed of multiple physical domains. As PMs are widely used in various fields, the importance of modeling the global dynamic model of the PM system becomes increasingly prominent. Currently there lacks further research in global dynamic modeling. A unified modeling approach for the multi-energy domains PM system is proposed based on bond graph and a global dynamic model of the 3-UPS/S parallel stabilized platform involving mechanical and electrical-hydraulic elements is built. Firstly, the screw bond graph theory is improved based on the screw theory, the modular joint model is modeled and the normalized dynamic model of the mechanism is established. Secondly, combined with the electro-hydraulic servo system model built by traditional bond graph, the global dynamic model of the system is obtained, and then the motion, force and power of any element can be obtained directly. Lastly, the experiments and simulations of the driving forces, pressure and flow are performed, and the results show that, the theoretical calculation results of the driving forces are in accord with the experimental ones, and the pressure and flow of the first limb and the third limb are symmetry with each other. The results are reasonable and verify the correctness and effectiveness of the model and the method. The proposed dynamic modeling method provides a reference for modeling of other multi-energy domains system which contains complex PM. 展开更多
关键词 screw bond graph multi-energy domains 3-UPS/S parallel mechanism electro-hydraulic servo system
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部