为了改善小波变换的图像稀疏表示性能,提出了一种小波域的灰色关联度图像压缩算法.首先,利用小波变换对测试图像进行分解,获得不同区域的小波系数;然后,利用小波系数特点,将灰色关联度用于系数关联度的刻画中,并计算不同尺度间系数的灰...为了改善小波变换的图像稀疏表示性能,提出了一种小波域的灰色关联度图像压缩算法.首先,利用小波变换对测试图像进行分解,获得不同区域的小波系数;然后,利用小波系数特点,将灰色关联度用于系数关联度的刻画中,并计算不同尺度间系数的灰色关联度;根据小波系数区域特征,将小波系数进行分类,构造出不同系数类型下的稀疏表示方法;最后,将该算法应用于图像压缩.实验结果表明,在相同压缩率下,所提算法的客观评价指标峰值信噪比较现有同类算法提高了1.04~3.65 d B,图像主观视觉质量明显提高.所提算法能够结合系数特征和视觉特性自适应地构造字典,提高了图像稀疏表示能力,进一步提高了图像压缩性能.展开更多
文摘为了改善小波变换的图像稀疏表示性能,提出了一种小波域的灰色关联度图像压缩算法.首先,利用小波变换对测试图像进行分解,获得不同区域的小波系数;然后,利用小波系数特点,将灰色关联度用于系数关联度的刻画中,并计算不同尺度间系数的灰色关联度;根据小波系数区域特征,将小波系数进行分类,构造出不同系数类型下的稀疏表示方法;最后,将该算法应用于图像压缩.实验结果表明,在相同压缩率下,所提算法的客观评价指标峰值信噪比较现有同类算法提高了1.04~3.65 d B,图像主观视觉质量明显提高.所提算法能够结合系数特征和视觉特性自适应地构造字典,提高了图像稀疏表示能力,进一步提高了图像压缩性能.