Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usa...Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.展开更多
Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem ...Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.展开更多
Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of...Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of underground space resources is the foundation for the rational use of land resources and urban planning.On the basis of the geological conditions used by preceding researchers,this study adds the analysis of two influencing factors of social and economic value,alongside existing facilities and protection needs.The evaluation index is quantified and the comprehensive quality evaluation system of underground space resources is constructed.Finally,taking the Nanshan District of Shenzhen as an example,the evaluation of underground space resources is carried out.The results show that for shallow underground space,the comprehensive quality of underground space resources development in Nanshan District is generally high.Nantou,Nanshan and Yuehai streets are recommended as areas to actively develop underground space,whereas the Qianhai and Houhai areas are recommended to be used with caution in the development and construction of their underground space.In addition,this study also provides a reference for the purposes of underground space planning in the Nanshan district of Shenzhen.展开更多
针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于...针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。展开更多
基金the Scientific Research Funding Project of Liaoning Education Department of China under Grant No.JDL2020005,No.LJKZ0485the National Key Research and Development Program of China under Grant No.2018YFA0704605.
文摘Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.
文摘Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.
基金The project of the Chinese Geological Survey'Survey of geothermal resources in the northern branch of Luoxiao Mountains'(Grant No.DD20221677-2)the special funds for basic scientific research business'Research on dome structure and circulation mechanism of annular hot spring chain'(Grant No.JKY202004)funded this research project。
文摘Underground space resources are important for the purposes of urban sustainable development and are a significant means by which to realize three-dimensional urban development.A reasonable and scientific evaluation of underground space resources is the foundation for the rational use of land resources and urban planning.On the basis of the geological conditions used by preceding researchers,this study adds the analysis of two influencing factors of social and economic value,alongside existing facilities and protection needs.The evaluation index is quantified and the comprehensive quality evaluation system of underground space resources is constructed.Finally,taking the Nanshan District of Shenzhen as an example,the evaluation of underground space resources is carried out.The results show that for shallow underground space,the comprehensive quality of underground space resources development in Nanshan District is generally high.Nantou,Nanshan and Yuehai streets are recommended as areas to actively develop underground space,whereas the Qianhai and Houhai areas are recommended to be used with caution in the development and construction of their underground space.In addition,this study also provides a reference for the purposes of underground space planning in the Nanshan district of Shenzhen.
文摘针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。