Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve co...This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.展开更多
As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus...As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved.展开更多
On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising cloc...On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.展开更多
Analysis approach and formulas for the transmission properties of uniform multicon-ductor interconnecting buses in high-speed integrated circuits are presented in this article. And further, by using a network approach...Analysis approach and formulas for the transmission properties of uniform multicon-ductor interconnecting buses in high-speed integrated circuits are presented in this article. And further, by using a network approach, a tapered bus system can be analyzed as a set of cascaded uniform buses with slightly different strip widths. Obtained results are in good agreement with the experimental data.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-...Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.展开更多
With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power...With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power system,and the problem of power quality is becoming more and more serious.This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage,which combines the flexible interconnection technology with the energy storage device.The primary technology is to regulate the active and reactive power of the converter.By comparing the actual power value of the converter with the reference value,the proportional integral(PI)controller is used for correction,and the current components of d and q axes are obtained and input to the converter as the reference value of the current inner loop.The control strategy in this paper can realize power mutual aid between feeders,and at the same time,the energy storage device can provide or absorb a certain amount of power for feeders,so that the power grid can realize stable operation in a certain range.展开更多
The traditional nano-sintering or TLP techniques are generally expensive,time-consuming,and hence unsuitable for realizing practical mass production.Herein,we have developed an improved TLP process to rapidly produce ...The traditional nano-sintering or TLP techniques are generally expensive,time-consuming,and hence unsuitable for realizing practical mass production.Herein,we have developed an improved TLP process to rapidly produce IMC-skeleton structures across the bonding region by initiating a localized liquid-solid interaction among micron particles at traditional soldering temperatures.The developed IMC skeletons can reinforce solder alloys and provide remarkable mechanical stability and electrical capabilities at high temperatures.As a result,the IMC-skeleton strengthened interconnections exhibited higher thermal/electrical conductivity,lower hardness and almost doubled strength than traditional full-IMC joints,attaining 87.4 MPa and 30.2 MPa at room condition and 350℃.Meanwhile,the necessary heating time to form metallurgical bonds was shortened,one-fifth of nano-sintering and one-tenth of TLP bonding,and the material cost was significantly reduced.This proposed technique enabled the fast,low-cost manufacturing of electronics that can serve at temperatures as high as 200−350℃.Besides,the interfacial reactions among particles and the correlated phase evolution process were studied in this research.The formation mechanism of IMC skeletons was analyzed.The correlated influencing factors and their effect on the mechanical,thermal and electrical properties of joints were revealed,which may help the design and extensive uses of such techniques in various high-temperature/power applications.展开更多
Recent architectures of multi-core systems may have a relatively large number of cores that typically ranges from tens to hundreds;therefore called many-core systems.Such systems require an efficient interconnection n...Recent architectures of multi-core systems may have a relatively large number of cores that typically ranges from tens to hundreds;therefore called many-core systems.Such systems require an efficient interconnection network that tries to address two major problems.First,the overhead of power and area cost and its effect on scalability.Second,high access latency is caused by multiple cores’simultaneous accesses of the same shared module.This paper presents an interconnection scheme called N-conjugate Shuffle Clusters(NCSC)based on multi-core multicluster architecture to reduce the overhead of the just mentioned problems.NCSC eliminated the need for router devices and their complexity and hence reduced the power and area costs.It also resigned and distributed the shared caches across the interconnection network to increase the ability for simultaneous access and hence reduce the access latency.For intra-cluster communication,Multi-port Content Addressable Memory(MPCAM)is used.The experimental results using four clusters and four cores each indicated that the average access latency for a write process is 1.14785±0.04532 ns which is nearly equal to the latency of a write operation in MPCAM.Moreover,it was demonstrated that the average read latency within a cluster is 1.26226±0.090591 ns and around 1.92738±0.139588 ns for read access between cores from different clusters.展开更多
Many Internet of Things(IoT)systems are based on the intercommunication among different devices and centralized systems.Nowadays,there are several commercial and research platforms available to simplify the creation o...Many Internet of Things(IoT)systems are based on the intercommunication among different devices and centralized systems.Nowadays,there are several commercial and research platforms available to simplify the creation of such IoT systems.However,developing these systems can often be a tedious task.To address this challenge,a proposed solution involves the implementation of a unified program or script that encompasses the entire system,including IoT devices functionality.This approach is based on an abstraction,integrating the control of the devices in a single program through a programmable object.Subsequently,the proposal processes the unified script to generate the centralized system code and a controller for each device.By adopting this approach,developers will be able to create IoT systems with significantly reduced implementation costs,surpassing current platforms by more than 10%.The results demonstrate that the single program approach can significantly accelerate the development of IoT systems relying on device communication.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-l...Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably.展开更多
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
文摘This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.
基金financially supported by the Guangdong Major Project of Basic and Applied Basic Research(2019B030302007)the Ministry of Science and Technology(2017YFA0206600,2019YFA0705900)+6 种基金the Natural Science Foundation of China(51973063,91733302 and 51803060)Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar(2021B1515020028)the Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(South China University of Technology)(2019B030301003)the Science and Technology Program of Guangzhou,China(201904010147)the funding by State Key Lab of Luminescent Materials and Devices,South China University of Technologythe Fellowship of China Postdoctoral Science Foundation(2020M682703)the National Natural Science Foundation of China(52003090)。
文摘As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60725415, 60971066, and 61006028)the National High-Tech Program of China (Grant Nos. 2009AA01Z258 and 2009AA01Z260)the National Key Lab Foundation,China (Grant No. ZHD200904)
文摘On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses.
文摘Analysis approach and formulas for the transmission properties of uniform multicon-ductor interconnecting buses in high-speed integrated circuits are presented in this article. And further, by using a network approach, a tapered bus system can be analyzed as a set of cascaded uniform buses with slightly different strip widths. Obtained results are in good agreement with the experimental data.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
基金supported by the National Science Foundation of China(Grant No.41701232).
文摘Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.
基金Supported by Science and Technology Projects of State Grid Corporation of China(JF2021018).
文摘With the wide application of renewable energy power generation technology,the distribution network presents the characteristics of multi-source and complex structure.There are potential risks in the stability of power system,and the problem of power quality is becoming more and more serious.This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage,which combines the flexible interconnection technology with the energy storage device.The primary technology is to regulate the active and reactive power of the converter.By comparing the actual power value of the converter with the reference value,the proportional integral(PI)controller is used for correction,and the current components of d and q axes are obtained and input to the converter as the reference value of the current inner loop.The control strategy in this paper can realize power mutual aid between feeders,and at the same time,the energy storage device can provide or absorb a certain amount of power for feeders,so that the power grid can realize stable operation in a certain range.
基金the research grant of the National Natural Science Foundation of China(Grant No.52075125,No.52105331)The research was also partially supported by Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20210324124203009,No.JSGG20201102154600003,No.GXWD20220818163456002).
文摘The traditional nano-sintering or TLP techniques are generally expensive,time-consuming,and hence unsuitable for realizing practical mass production.Herein,we have developed an improved TLP process to rapidly produce IMC-skeleton structures across the bonding region by initiating a localized liquid-solid interaction among micron particles at traditional soldering temperatures.The developed IMC skeletons can reinforce solder alloys and provide remarkable mechanical stability and electrical capabilities at high temperatures.As a result,the IMC-skeleton strengthened interconnections exhibited higher thermal/electrical conductivity,lower hardness and almost doubled strength than traditional full-IMC joints,attaining 87.4 MPa and 30.2 MPa at room condition and 350℃.Meanwhile,the necessary heating time to form metallurgical bonds was shortened,one-fifth of nano-sintering and one-tenth of TLP bonding,and the material cost was significantly reduced.This proposed technique enabled the fast,low-cost manufacturing of electronics that can serve at temperatures as high as 200−350℃.Besides,the interfacial reactions among particles and the correlated phase evolution process were studied in this research.The formation mechanism of IMC skeletons was analyzed.The correlated influencing factors and their effect on the mechanical,thermal and electrical properties of joints were revealed,which may help the design and extensive uses of such techniques in various high-temperature/power applications.
文摘Recent architectures of multi-core systems may have a relatively large number of cores that typically ranges from tens to hundreds;therefore called many-core systems.Such systems require an efficient interconnection network that tries to address two major problems.First,the overhead of power and area cost and its effect on scalability.Second,high access latency is caused by multiple cores’simultaneous accesses of the same shared module.This paper presents an interconnection scheme called N-conjugate Shuffle Clusters(NCSC)based on multi-core multicluster architecture to reduce the overhead of the just mentioned problems.NCSC eliminated the need for router devices and their complexity and hence reduced the power and area costs.It also resigned and distributed the shared caches across the interconnection network to increase the ability for simultaneous access and hence reduce the access latency.For intra-cluster communication,Multi-port Content Addressable Memory(MPCAM)is used.The experimental results using four clusters and four cores each indicated that the average access latency for a write process is 1.14785±0.04532 ns which is nearly equal to the latency of a write operation in MPCAM.Moreover,it was demonstrated that the average read latency within a cluster is 1.26226±0.090591 ns and around 1.92738±0.139588 ns for read access between cores from different clusters.
文摘Many Internet of Things(IoT)systems are based on the intercommunication among different devices and centralized systems.Nowadays,there are several commercial and research platforms available to simplify the creation of such IoT systems.However,developing these systems can often be a tedious task.To address this challenge,a proposed solution involves the implementation of a unified program or script that encompasses the entire system,including IoT devices functionality.This approach is based on an abstraction,integrating the control of the devices in a single program through a programmable object.Subsequently,the proposal processes the unified script to generate the centralized system code and a controller for each device.By adopting this approach,developers will be able to create IoT systems with significantly reduced implementation costs,surpassing current platforms by more than 10%.The results demonstrate that the single program approach can significantly accelerate the development of IoT systems relying on device communication.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
基金Funded by the Youth Science and Technology Talent Growth Project of Education Department of Guizhou Province(No.KY[2018]145)。
文摘Cu-Mn_(3)O_(4)composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800℃corresponding to the cathode atmosphere of solid oxide fuel cell(SOFC).A dual-layer oxide structure mainly comprising an external layer of CuO followed by(Cu,Mn,Fe)_(3)O_(4)spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel.The scale area-specific resistances(ASRs)of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure.The external layer of CuO/(Cu,Mn,Fe)_(3)O_(4)spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr,but also lowered the surface scale ASRs considerably.