期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
A technique for enhancing tight oil recovery by multi-field reconstruction and combined displacement and imbibition
1
作者 LEI Zhengdong WANG Zhengmao +6 位作者 MU Lijun PENG Huanhuan LI Xin BAI Xiaohu TAO Zhen LI Hongchang PENG Yingfeng 《Petroleum Exploration and Development》 SCIE 2024年第1期152-163,共12页
A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress ... A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil. 展开更多
关键词 tight oil complex fracture network energy increase by fracturing multi-field reconstruction displacement and imbibition combination EOR
下载PDF
Research and Application of a Multi-Field Co-Simulation Data Extraction Method Based on Adaptive Infinitesimal Element
2
作者 Changfu Wan Wenqiang Li +2 位作者 Sitong Ling Yingdong Liu Jiahao Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期321-348,共28页
Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.... Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.In this study,a multi-field co-simulation data extractionmethod based on adaptive infinitesimal elements is proposed.Themultifield co-simulation dataset based on related infinitesimal elements is constructed,and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction.Based on the fireworks algorithm,the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive calculation of data extraction micro-step length.The multi-field co-simulation data extraction process based on adaptive microelement is established and applied to the data extraction process of the multi-field co-simulation dataset of the sintering furnace.Compared with traditional data extraction methods for multi-field co-simulation,the approximate model constructed by the data extracted from the proposed method has higher construction efficiency.Meanwhile,the relative maximum absolute error,root mean square error,and coefficient of determination of the approximationmodel are better than those of the approximation model constructed by the data extracted from traditional methods,indicating higher accuracy,it is verified that the proposed method demonstrates sound adaptability and extraction efficiency. 展开更多
关键词 multi-field co-simulation adaptive infinitesimal elements principal component analysis fireworks algorithm sintering furnace simulation
下载PDF
Integrated multi-scale approach combining global homogenization and local refinement for multi-field analysis of high-temperature superconducting composite magnets
3
作者 Hanxiao GUO Peifeng GAO Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期747-762,共16页
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app... Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets. 展开更多
关键词 epoxy-impregnated high-temperature superconducting(HTS)magnet multi-scale method global homogenization(GH) local refinement(LR) multi-field analysis
下载PDF
Experimental research and numerical simulation of the multi-field performance of cemented paste backfill:Review and future perspectives 被引量:6
4
作者 Yong Wang Zhenqi Wang +4 位作者 Aixiang Wu Liang Wang Qing Na Chen Cao Gangfeng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期193-208,共16页
Cemented paste backfill(CPB)technology is a green mining method used to control underground goaves and tailings ponds.The curing process of CPB in the stope is the product of a thermo-hydro-mechanical-chemical multi-f... Cemented paste backfill(CPB)technology is a green mining method used to control underground goaves and tailings ponds.The curing process of CPB in the stope is the product of a thermo-hydro-mechanical-chemical multi-field performance interaction.At present,research on the multi-field performance of CPB mainly includes indoor similar simulation experiments,in-situ multi-field performance monitoring experiments,multi-field performance coupling model construction of CPB,and numerical simulation of the multi-field performance of CPB.Because it is hard to study the in-situ multi-field performance of CPB in the real stope,most current research on in-situ multi-field performance adopts the numerical simulation method.By simulating the conditions of CPB in the real stope(e.g.,maintenance environment,stope geometry,drainage conditions,and barricade and backfilling rates),the multi-field performance of CPB is further studied.This paper summarizes the mathematical models employed in the numerical simulation and lists the engineering application cases of numerical simulation in the in-situ multi-field performance of CPB.Finally,it proposes that the multi-field performance of CPB needs to strengthen the theoretical study of multi-field performance,form the strength design criterion based on the multi-field performance of CPB,perform a full-range numerical simulation of the multi-field performance of CPB,develop a pre-warning technology for the CPB safety of CPB,develop automatic and wireless sensors for the multi-field performance monitoring of CPB,and realize the application and popularization of CPB monitoring technology. 展开更多
关键词 cemented paste backfill multi-field performance in situ mathematic model numerical simulation
下载PDF
Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate 被引量:1
5
作者 Xueqian FANG Qilin HE +1 位作者 Hongwei MA Changsong ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1351-1366,共16页
Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan... Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail. 展开更多
关键词 sandwiched piezoelectric semiconductor(PS)plate functionally-graded layer multi-field coupling free vibration Hamilton's principle
下载PDF
Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
6
作者 许之磊 高国强 +6 位作者 钱鹏宇 肖嵩 魏文赋 杨泽锋 董克亮 马亚光 吴广宁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期493-503,共11页
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ... The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas. 展开更多
关键词 pantograph-catenary arc low pressure multi-field stress coupling model arc column drift
下载PDF
Development and application of multi-field coupled high-pressure triaxial apparatus for soil
7
作者 Xiu-yan Wang Lin Sun +6 位作者 Shuai-wei Wang Ming-yu Wang Jin-qiu Li Wei-chao Sun Jing-jing Wang Xi Zhu He Di 《Journal of Groundwater Science and Engineering》 2023年第3期308-316,共9页
The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa... The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster. 展开更多
关键词 multi-field coupled triaxial test High and low temperature Horizontal deformation Compressed water release
下载PDF
Progress on two-dimensional ferrovalley materials
8
作者 李平 刘邦 +2 位作者 陈帅 张蔚曦 郭志新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期32-43,共12页
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t... The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics. 展开更多
关键词 ferrovalley valley polarization two-dimensional materials multi-field tunable
下载PDF
Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine 被引量:6
9
作者 Zhibin Lin Boyang Zhang Jiaqi Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期311-330,共20页
Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aq... Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs. 展开更多
关键词 Karst collapse column multi-field coupling seepage mutation water-inrush
下载PDF
A generalized multi-field coupling approach and its application to stability and deformation control of a high slope 被引量:5
10
作者 Chuangbing Zhou Yifeng Chen +1 位作者 Qinghui Jiang Wenbo Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期193-206,共14页
Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engine... Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated. 展开更多
关键词 generalized multi-field couplings engineering disturbance slope stability deformation control
下载PDF
MULTI-FIELD COUPLING BEHAVIOR OF SIMPLY-SUPPORTED CONDUCTIVE PLATE UNDER THE CONDITION OF A TRANSVERSE STRONG IMPULSIVE MAGNETIC FIELD 被引量:3
11
作者 Zhu Linli Zhang Jianping Zheng Xiaojing 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期203-211,共9页
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami... In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field. 展开更多
关键词 multi-field coupling conductive thin plate impulsive magnetic field eddy current dynamic buckling magnetic volume forces
下载PDF
Numerical Analysis on Multi-Field Characteristics and Synergy in a Large-Size Annular Combustion Chamber with Double Swirlers 被引量:2
12
作者 Zaiguo Fu Huanhuan Gao +1 位作者 Zhuoxiong Zeng Jiang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期805-830,共26页
In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temp... In order to comprehensively evaluate the flow and heat transfer performance of a large-size annular combustion chamber of a heavy-duty gas turbine,we carried out numerical computation and analyses on the velocity,temperature and pressure fields in the chamber with double swirlers.The mathematical model of the coupling combustion,gas flow,and heat transfer process was established.The influences of the inlet swirling strength,fuel-air ratio and temperature of the premixed gas on the multi-field characteristics and synergy were investigated on the basis of field synergy theory.The results showed that the central recirculation zone induced by the inlet swirling flow grows downstream in the combustion chamber.The velocity and temperature in the outlet section of the chamber tend to be uniform due to the upstream improved synergy.The outer swirl number of the premixed gas flow has a great influence on the comprehensive flow and heat transfer performance of the combustion chamber.The synergy angles change towards benefiting the synergy between velocity and temperature fields with the increasing swirl numbers and inlet gas temperature while the velocity-pressure synergy becomes poor.The increasing fuel-air ratio of premixed gas leads to different trends of the velocity-temperature synergy and velocity-pressure synergy.The comprehensive synergy representing the low-resistance heat transfer performance is evidently dominated mainly by the velocity-temperature synergy. 展开更多
关键词 Annular combustor heat transfer multi-field synergy synergy angle swirling flow.
下载PDF
Multi-Field Analysis and Experimental Verification on Piezoelectric Valve-Less Pumps Actuated by Centrifugal Force 被引量:1
13
作者 Yu-Ting Ma Zhi-Guo Pei Zhong-Xiang Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期1032-1043,共12页
A piezoelectric centrifugal pump was developed previously to overcome the low frequency responses of piezoelectric pumps with check valves and liquid reflux of conventional valveless piezoelectric pumps. However, the ... A piezoelectric centrifugal pump was developed previously to overcome the low frequency responses of piezoelectric pumps with check valves and liquid reflux of conventional valveless piezoelectric pumps. However, the electro-mechanical-fluidic analysis on this pump has not been done. Therefore, multi-field analysis and experimen- tal verification on piezoelectrically actuated centrifugal valveless pumps are conducted for liquid transport appli- cations. The valveless pump consists of two piezoelectric sheets and a metal tube with piezoelectric elements pushing the metal tube to swing at the first bending resonant fre- quency. The centrifugal force generated by the swinging motion will force the liquid out of the metal tube. The governing equations for the solid and fluid domains are established, and the coupling relations of the mechanical, electrical and fluid fields are described. The bending res- onant frequency and bending mode in solid domain are discussed, and the liquid flow rate, velocity profile, and gauge pressure are investigated in fluid domain. The working frequency and flow rate concerning different components sizes are analyzed and verified through experiments to guide the pump design. A fabricated pro- totype with an outer diameter of 2.2 mm and a length of 80 mm produced the largest flow rate of 13.8 mL/min at backpressure of 0.8 kPa with driving voltage of 80 Vpp. Bysolving the electro-mechanical-fluidic coupling problem, the model developed can provide theoretical guidance on the optimization of centrifugal valveless pump characters. 展开更多
关键词 Valveless pump Centrifugal force Piezoelectric pump multi-field analysis
下载PDF
The Description of Oil Displacement Mechanism in Steam Injection of Multi-Field Synergy with Exergy Transfer 被引量:1
14
作者 Qinglin Cheng Yang Wang Xiaoli Sun 《World Journal of Mechanics》 2013年第3期169-173,共5页
Steam injection is a most effective way for improving heavy oil recovery efficiency, and it has academic and practical significance for the mechanism of multi-field synergy oil displacement. Mechanism of “diversified... Steam injection is a most effective way for improving heavy oil recovery efficiency, and it has academic and practical significance for the mechanism of multi-field synergy oil displacement. Mechanism of “diversified” oil displacement which is obtained by traditional study methods in the exploitation territory of oil and gas fields has both respective roles and mutual cross shortages. To describe and analyze the displacement process of multi-field coupling with exergy transfer can simplify this kind of problem by introducing a unified goal-driving exergy. It needs to use the method of theoretical modeling, numerical simulation and experimental validation to study the basic law of exergy transfer in the oil displacement process of multi-field synergy, make a thorough research for the flooding process of steam injection with exergy transfer theory and reveal the oil displacement mechanism in steam injection of multi-field synergy. Thus the theory instruction and technical support can be provided to improve reservoirs producing degree and extraction ratio. 展开更多
关键词 Steam INJECTION EXERGY EXERGY Transfer multi-field SYNERGY Mechanism of Oil DISPLACEMENT
下载PDF
Nonlinear stability of sensor elastic element--corrugated shallow spherical shell in coupled multi-field
15
作者 Yongan ZHU Fan WANG Renhuai LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第6期877-888,共12页
Nonlinear stability of sensor elastic element- corrugated shallow spherical shell in coupled multi-field is studied. With the equivalent orthotropic parameter obtairled by the author, the corrugated shallow spherical ... Nonlinear stability of sensor elastic element- corrugated shallow spherical shell in coupled multi-field is studied. With the equivalent orthotropic parameter obtairled by the author, the corrugated shallow spherical shell is considered as an orthotropic shallow spherical shell, and geometrical nonlinearity and transverse shear deformation are taken into account. Nonlinear governing equations are obtained. The critical load is obtained using a modified iteration method. The effect of temperature variation and shear rigidity variation on stability is analyzed. 展开更多
关键词 modified iteration method corrugated shallow spherical shell multi-field stability critical load temperature variation
下载PDF
Dose Comparison between Eclipse Dose Calculation and Fast Dose Calculator in Single- and Multi-Field Optimization Intensity-Modulated Proton Therapy Plans with Various Multi-Beams for Brain Cancer
16
作者 Ryosuke Kohno Wenhua Cao +5 位作者 Pablo Yepes Xuemin Bai Falk Poenisch David R. Grosshans Tetsuo Akimoto Radhe Mohan 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2017年第4期421-432,共12页
The purpose of this study was to grasp current potential problems of dose error in intensity-modulated proton therapy (IMPT) plans. We were interested in dose differences of the Varian Eclipse treatment planning syste... The purpose of this study was to grasp current potential problems of dose error in intensity-modulated proton therapy (IMPT) plans. We were interested in dose differences of the Varian Eclipse treatment planning system (TPS) and the fast dose calculation method (FDC) for single-field optimization (SFO) and multi-field optimization (MFO) IMPT plans. In addition, because some authors have reported dosimetric benefit of a proton arc therapy with ultimate multi-fields in recent years, we wanted to evaluate how the number of fields and beam angles affect the differences for IMPT plans. Therefore, for one brain cancer patient with a large heterogeneity, SFO and MFO IMPT plans with various multi-angle beams were planned by the TPS. Dose distributions for each IMPT plan were calculated by both the TPS’s conventional pencil beam algorithm and the FDC. The dosimetric parameters were compared between the two algorithms. The TPS overestimated 400 - 500 cGy (RBE) for minimum dose to the CTV relative to the dose calculated by the FDC. These differences indicate clinically relevant effect on clinical results. In addition, we observed that the maximum difference in dose calculated between the TPS and the FDC was about 900 cGy (RBE) for the right optic nerve, and this quantity also has a possibility to have a clinical effect. The major difference was not seen in calculations for SFO IMPT planning and those for MFO IMPT planning. Differences between the TPS and the FDC in SFO and MFO IMPT plans depend strongly on beam arrangement and the presence of a heterogeneous body. We advocate use of a Monte Carlo method in proton treatment planning to deliver the most precise proton dose in IMPT. 展开更多
关键词 FAST DOSE CALCULATOR Monte Carlo INTENSITY-MODULATED Proton Therapy Single-Field OPTIMIZATION (SFO) multi-field OPTIMIZATION (MFO)
下载PDF
Improvement of atmospheric jet-array plasma uniformity assisted by artificial neural networks
17
作者 郑树磊 聂秋月 +2 位作者 黄韬 侯春风 王晓钢 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期105-118,共14页
Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structure... Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands. 展开更多
关键词 atmospheric pressure plasma jet-array multi-field coupling and modulation artificial neural network(ANN)
下载PDF
Design of new resonant magnetic perturbation coils on the J-TEXT tokamak
18
作者 黄卓 周松 +11 位作者 樊金荣 李达 饶波 王能超 丁永华 毛飞越 黄名响 田微 陈忠勇 陈志鹏 梁云峰 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期142-149,共8页
The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to... The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to be two-turn saddle coils.These two-turn saddle coils have been optimized in terms of their structure,support,and protection components to overcome the limitations of the narrow in-vessel space,resulting in a compact coil module that can be accommodated in the vessel.To verify the feasibility of this design,an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils.A multi-field coupled simulation is performed to investigate the capacity of heat dissipation.As a result of these efforts,the new RMP coils have been successfully installed on the J-TEXT tokamak.It has significantly enhanced the RMP amplitude and been widely applied in experiments. 展开更多
关键词 fusion engineering TOKAMAK resonant magnetic perturbation coil multi-field coupled simulation(Some fioures may appeari in colour only in the online iournal)
下载PDF
Multi-field Coupled Inverse Hall–Petch Relations for Ferroelectric Nanocrystals
19
作者 Xiaodong Zhang Wei Yan +5 位作者 Xuhui Lou Yujun Chen Zhihong Zhou Qingyuan Wang Lianhua Ma Xiaobao Tian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期139-147,共9页
Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism ... Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism in polycrystals shifts from being primarily mediated by dislocations to deformation occurring within the grains and grain boundaries.However,the mechanism responsible for fine-grain strengthening in ferroelectric materials remains unclear,primarily due to the complex multi-field coupling effect arising from spontaneous polarization.Through molecular dynamics simulations,we investigate the strengthening mechanism of barium titanate(BaTiO3),with extremely fine-grain sizes.This material exhibits an inverse Hall–Petch relationship between grain size and strength,rooting in the inhomogeneous concentration of atomic strain and grain rotation.Furthermore,we present a theoretical model to predict the transition from the inverse Hall–Petch stage to the Hall–Petch stage based on strength variations with size,which aligns well with the simulation results.It has been found that the piezoelectric properties of the BaTiO3 are affected by polarization domain switching at various grain sizes.This study enhances our understanding of the atomic-scale mechanisms that contribute to the performance evolution of fine-grain nano-ferroelectric materials.It also provides valuable insights into the design of extremely small-scale ferroelectric components. 展开更多
关键词 FERROELECTRICS multi-field coupling Molecular dynamics Fine-grain reinforcement Inverse Hall-Petch effect
原文传递
Porosity and permeability variations of a dam curtain during dissolution 被引量:12
20
作者 Ji-xiang Huo Fu-heng Ma Xiao-lei Ji 《Water Science and Engineering》 EI CAS CSCD 2019年第2期155-161,共7页
During reservoir operation,the erosion effects of groundwater change the porosity and permeability of the dam curtain,causing changes to the seepage field.To understand where the changes take place and to what degree ... During reservoir operation,the erosion effects of groundwater change the porosity and permeability of the dam curtain,causing changes to the seepage field.To understand where the changes take place and to what degree the porosity and permeability change,a multi-field coupling model was built and solved.The model takes into account seepage,solution concentration,and solid structure.The model was validated using uplift pressure monitoring data.Then,the variations in curtain porosity,seepage flow,and loss quantity of Ca(OH)2 were calculated.The key time nodes were obtained through curve fitting of the variation of seepage flow with the BiDoseResp function.The results showed that the model could reflect the attenuation trend of curtain performance well.The process and position of the erosion were not homogeneous.Although erosion mainly occurred at the top and bottom of the curtain,it was most developed at the top.The erosion effects developed slowly during the early stage,much fast during the middle and late stages,and culminated in complete dissolution.The model results and the daily monitoring data can provide a scientific basis for the safe operation and management of reservoirs. 展开更多
关键词 DAM CURTAIN Permeability multi-field coupling model POROSITY Erosion SOLUTE transport SEEPAGE flow
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部