This paper presents a direct traction boundary integral equation method(DTBIEM)for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and e...This paper presents a direct traction boundary integral equation method(DTBIEM)for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces.The displacements and tractions were used as unknowns on the external boundary,while the relative crack opening displacement(RCOD)was chosen as unknowns on either side of crack surfaces to keep the single-domain merit.Only one side of the crack surfaces was concerned and needed to be discretized,thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method(DBEM).A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly,and the SIFs were evaluated by the extrapolation of the RCOD.Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method.展开更多
基金This work was supported by The National Key R&D Program of China(Grant No.2017YFC0804601)the National Natural Science Foundation of China(No.51741410)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017017).
文摘This paper presents a direct traction boundary integral equation method(DTBIEM)for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces.The displacements and tractions were used as unknowns on the external boundary,while the relative crack opening displacement(RCOD)was chosen as unknowns on either side of crack surfaces to keep the single-domain merit.Only one side of the crack surfaces was concerned and needed to be discretized,thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method(DBEM).A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly,and the SIFs were evaluated by the extrapolation of the RCOD.Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method.