Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hund...Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy(TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference(CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials.展开更多
We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found th...We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.展开更多
In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of...In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.展开更多
A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction...A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.展开更多
A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubb...A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local parameter measurements in gas-liquid two-phase flows.展开更多
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the ...This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.展开更多
Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is...Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 ...We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode(E-mode). As the discharge mode changes into the inductively coupled mode(H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode(W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon(H) and Trivelpiece-Gould(TG) waves.展开更多
Radial distribution of vapor local parameters, including local void fraction, interfacial velocity, bubblesize, bubble frequency and interfacial area concentration, are investigated through the measurement in an upwar...Radial distribution of vapor local parameters, including local void fraction, interfacial velocity, bubblesize, bubble frequency and interfacial area concentration, are investigated through the measurement in an upwardboiling tube using dual-sensor optical probe. In addition, a new local parameter -"local bubble number concentra-tion" is developed on the basis of bubble frequency. The analysis shows that this parameter can reflect bubble numberdensity in space, and has clear physical meaning.展开更多
Radial profiles of local gas and solid holdups and liquid interstitial velocity were measured in a largediameter three-phase fluidized bed, and a systematic study was carried out in comparing the present data with tho...Radial profiles of local gas and solid holdups and liquid interstitial velocity were measured in a largediameter three-phase fluidized bed, and a systematic study was carried out in comparing the present data with those obtained in small-diameter beds. Radial profiles of local gas holdup were found to be parabolic; the distribution of local solid particle holdup could be expressed by Eq. (9); liquid interstitial velocity was well described by the modified circulating flow model.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ22A040003)the National Natural Science Foundation of China (Grant No. 52027809)。
文摘Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy(TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference(CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials.
基金the National Natural Science Foundation of China(Grant No.11205001)the National Basic Research Program of China(Grant No.2010CB234607)the Postdoctoral Science Foundation of Anhui University,China
文摘We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
文摘In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.
文摘A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.
基金Supported by the National Natural Science Foundation of China(No.59876032)and the Doctorate Foundation of Xi'an Jiaotong University(DFXJU-17).
文摘A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local parameter measurements in gas-liquid two-phase flows.
基金Project (No. 15933) supported by the Royal Society-Chinese Acad-emy of Sciences Joint Project
文摘This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.
基金support provided by the Spanish Ministry of Science and Innovation(MICINN,Madrid,Spain)the European Regional Development Fund(Brussels,Belgium)MCIN/AEI/10.13039/501100011033/FEDER,UE under grant PID2021-127445NB-I00.
文摘Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
基金supported by National Natural Science Foundation of China (Nos. 11475131, 11805011)
文摘We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode(E-mode). As the discharge mode changes into the inductively coupled mode(H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode(W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon(H) and Trivelpiece-Gould(TG) waves.
基金Supported by the National Science Foundation of China(No.59995460-1) and Nuclear Industry Science Foundation (No.Y7100E51001)
文摘Radial distribution of vapor local parameters, including local void fraction, interfacial velocity, bubblesize, bubble frequency and interfacial area concentration, are investigated through the measurement in an upwardboiling tube using dual-sensor optical probe. In addition, a new local parameter -"local bubble number concentra-tion" is developed on the basis of bubble frequency. The analysis shows that this parameter can reflect bubble numberdensity in space, and has clear physical meaning.
文摘Radial profiles of local gas and solid holdups and liquid interstitial velocity were measured in a largediameter three-phase fluidized bed, and a systematic study was carried out in comparing the present data with those obtained in small-diameter beds. Radial profiles of local gas holdup were found to be parabolic; the distribution of local solid particle holdup could be expressed by Eq. (9); liquid interstitial velocity was well described by the modified circulating flow model.