Due to limited depth-of-field of digital single-lens reflex cameras,the scene content within a limited distance from the imaging plane remains in focus while other objects closer to or further away from the point of f...Due to limited depth-of-field of digital single-lens reflex cameras,the scene content within a limited distance from the imaging plane remains in focus while other objects closer to or further away from the point of focus appear as blurred(out-of-focus)in the image.Multi-Focus Image Fusion can be used to reconstruct a fully focused image from two or more partially focused images of the same scene.In this paper,a new Fuzzy Based Hybrid Focus Measure(FBHFM)for multi-focus image fusion has been proposed.Optimal block size is very critical step for multi-focus image fusion.Particle Swarm Optimization(PSO)algorithm has been used to find optimal size of the block of the images for extraction of focus measure features.After finding optimal blocks,three focus measures Sum of Modified Laplacian,Gray Level Variance and Contrast Visibility has been extracted and combined these focus measures by using intelligent fuzzy technique.Fuzzy based hybrid intelligent focus values were estimated using contrast visibility measure to generate focused image.Different sets of multi-focus images have been used in detailed experimentation and compared the results with state-of-the-art existing techniques such as Genetic Algorithm(GA),Principal Component Analysis(PCA),Laplacian Pyramid discrete wavelet transform(DWT),and aDWT for image fusion.It has been found that proposed method performs well as compare to existing methods.展开更多
In this paper,elastic metasurfaces composed of zigzag units are proposed to manipulate flexural waves at a deep subwavelength scale.Through the parameter optimization of the genetic algorithm,units with full transmiss...In this paper,elastic metasurfaces composed of zigzag units are proposed to manipulate flexural waves at a deep subwavelength scale.Through the parameter optimization of the genetic algorithm,units with full transmission and full phase control can be found,while the width is only one-fifth of the wavelength.The outstanding capability of the units is explained by analyzing.their wave fields.The flat and the curved metasurfaces for focusing are designed and simulated,showing excellent performance.Experimental results of the flat metasurface show that the incident wave energy at the focal point is enhanced over 6 times,verifying the simulation results.The proposed metasurfaces could be useful in the design of.compact and efficient elastic devices.展开更多
文摘Due to limited depth-of-field of digital single-lens reflex cameras,the scene content within a limited distance from the imaging plane remains in focus while other objects closer to or further away from the point of focus appear as blurred(out-of-focus)in the image.Multi-Focus Image Fusion can be used to reconstruct a fully focused image from two or more partially focused images of the same scene.In this paper,a new Fuzzy Based Hybrid Focus Measure(FBHFM)for multi-focus image fusion has been proposed.Optimal block size is very critical step for multi-focus image fusion.Particle Swarm Optimization(PSO)algorithm has been used to find optimal size of the block of the images for extraction of focus measure features.After finding optimal blocks,three focus measures Sum of Modified Laplacian,Gray Level Variance and Contrast Visibility has been extracted and combined these focus measures by using intelligent fuzzy technique.Fuzzy based hybrid intelligent focus values were estimated using contrast visibility measure to generate focused image.Different sets of multi-focus images have been used in detailed experimentation and compared the results with state-of-the-art existing techniques such as Genetic Algorithm(GA),Principal Component Analysis(PCA),Laplacian Pyramid discrete wavelet transform(DWT),and aDWT for image fusion.It has been found that proposed method performs well as compare to existing methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072223,12122207,12021002,11991031,and 11991032)Y.-F.Wang also acknowledges support by the Natural Science Foundation of Tianjin(Grant No.20JCQNJC01030).
文摘In this paper,elastic metasurfaces composed of zigzag units are proposed to manipulate flexural waves at a deep subwavelength scale.Through the parameter optimization of the genetic algorithm,units with full transmission and full phase control can be found,while the width is only one-fifth of the wavelength.The outstanding capability of the units is explained by analyzing.their wave fields.The flat and the curved metasurfaces for focusing are designed and simulated,showing excellent performance.Experimental results of the flat metasurface show that the incident wave energy at the focal point is enhanced over 6 times,verifying the simulation results.The proposed metasurfaces could be useful in the design of.compact and efficient elastic devices.