For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice ...In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice of signal type for different exploration tasks.By the threshold of the amplitude of the transmitted signal,a set of candidate frequencies are first selected.Then,by operating a spectrum envelope method at these candidate frequencies on received data,effective components in data are extracted.A frequency density calculation method is proposed based on a logical number summation method,to reasonably characterize the frequency density in different frequency bands.By applying this method to real data in Sichuan,China,with signal Type 13,75 effective components are extracted,including both main frequencies and harmonics.The result suggests that the number of effective frequencies in the 2^(n) sequence pseudo-random signal can be increased by extracting usable harmonics,without any additional fieldwork.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this meth...To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.展开更多
This paper introduces a new theory and algorithm that can be used in blind detection of the carrier wave signal and the pseudo-random sequence of the direct sequence spread spectrum (DS/SS) signal with negative SNR....This paper introduces a new theory and algorithm that can be used in blind detection of the carrier wave signal and the pseudo-random sequence of the direct sequence spread spectrum (DS/SS) signal with negative SNR. First, without any a priori knowledge of the DS/SS signal, the carrier wave signal can be detected from DS/SS signal with negative SNR by using stochastic differential equations and energy detection method. Based on this, the pseudo-random sequence can also be blindly detected in DS/SS signal with negative SNR by reducing noise of the nonlinear signal and the algorithm of wavelet multiscale decomposition algorithm. Finally, the computer simulation shows that we can detect the carrier wave signal with SNR=-27 dB and the pseudo-random sequence under error code ratio 10^-4with SNR =-10 dB.展开更多
In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast, inexpe...In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast, inexpensive and unbiased of cumulants estimation method is adopted in detecting signals. This detecting method is better for resisting noise performance and more practical than the autocorrelation method.展开更多
Calibrating the super low frequency (SLF) magnetic antenna in magnetic free space or an outdoor environment is difficult and complicated due to the large size calibration instruments and lots of measurement times. A...Calibrating the super low frequency (SLF) magnetic antenna in magnetic free space or an outdoor environment is difficult and complicated due to the large size calibration instruments and lots of measurement times. Aiming to calibrate the SLF magnetic antenna simply and efficiently, a calibration system comprised of a multi-frequency source, an A.C constant-current source and a solenoid is proposed according to the characteristic of an SLF magnetic antenna. The static magnetic transfer coefficient of the designed solenoid is calibrated. The measurement of the frequency response characteristics suggests the transfer coefficient remains unchanged in the range of the SLF band and is unaffected by the magnetic antenna internally installed. The CORDIC algorithm implemented in an FPGA is realized to generate a linear evenly-spaced multi-frequency signal with equal energy at each frequency. An A.C constant weak current source circuit is designed in order to avoid the impact on the magnetic induction intensity of a calibration system affected by impedance variation when frequency changing, linearity and the precision of the source are measured. The frequency characteristic of a magnetic antenna calibrated by the proposed calibration system agrees with the theoretical result and the standard Glass ring calibration result. The calibration precision satisfies the experimental requirement.展开更多
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC0604902)the National Natural Science Foundation of China(No.42004056)the Natural Science Foundation of Shandong Province,China(No.ZR201911010111).
文摘In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice of signal type for different exploration tasks.By the threshold of the amplitude of the transmitted signal,a set of candidate frequencies are first selected.Then,by operating a spectrum envelope method at these candidate frequencies on received data,effective components in data are extracted.A frequency density calculation method is proposed based on a logical number summation method,to reasonably characterize the frequency density in different frequency bands.By applying this method to real data in Sichuan,China,with signal Type 13,75 effective components are extracted,including both main frequencies and harmonics.The result suggests that the number of effective frequencies in the 2^(n) sequence pseudo-random signal can be increased by extracting usable harmonics,without any additional fieldwork.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.
基金funded by the National Natural Science Foundation of China(No.42004056)the Natural Science Foundation of Shangdong Province,China(No.ZR2020QD052)China Postdoctoral Science Foundation(No.2019M652386)。
文摘To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals.
基金the National Defence Key Foundation of China (Grant No. 614144)
文摘This paper introduces a new theory and algorithm that can be used in blind detection of the carrier wave signal and the pseudo-random sequence of the direct sequence spread spectrum (DS/SS) signal with negative SNR. First, without any a priori knowledge of the DS/SS signal, the carrier wave signal can be detected from DS/SS signal with negative SNR by using stochastic differential equations and energy detection method. Based on this, the pseudo-random sequence can also be blindly detected in DS/SS signal with negative SNR by reducing noise of the nonlinear signal and the algorithm of wavelet multiscale decomposition algorithm. Finally, the computer simulation shows that we can detect the carrier wave signal with SNR=-27 dB and the pseudo-random sequence under error code ratio 10^-4with SNR =-10 dB.
文摘In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast, inexpensive and unbiased of cumulants estimation method is adopted in detecting signals. This detecting method is better for resisting noise performance and more practical than the autocorrelation method.
基金supported by the Defense Pre-Research Foundation of China(No.51401020503)
文摘Calibrating the super low frequency (SLF) magnetic antenna in magnetic free space or an outdoor environment is difficult and complicated due to the large size calibration instruments and lots of measurement times. Aiming to calibrate the SLF magnetic antenna simply and efficiently, a calibration system comprised of a multi-frequency source, an A.C constant-current source and a solenoid is proposed according to the characteristic of an SLF magnetic antenna. The static magnetic transfer coefficient of the designed solenoid is calibrated. The measurement of the frequency response characteristics suggests the transfer coefficient remains unchanged in the range of the SLF band and is unaffected by the magnetic antenna internally installed. The CORDIC algorithm implemented in an FPGA is realized to generate a linear evenly-spaced multi-frequency signal with equal energy at each frequency. An A.C constant weak current source circuit is designed in order to avoid the impact on the magnetic induction intensity of a calibration system affected by impedance variation when frequency changing, linearity and the precision of the source are measured. The frequency characteristic of a magnetic antenna calibrated by the proposed calibration system agrees with the theoretical result and the standard Glass ring calibration result. The calibration precision satisfies the experimental requirement.