Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T...Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.展开更多
To improve the quality of ultrasonic elastography, by taking the advantage of code excitation and frequency compounding, a transmitting-side multi-frequency with coded excitation for elastography (TFCCE) was propose...To improve the quality of ultrasonic elastography, by taking the advantage of code excitation and frequency compounding, a transmitting-side multi-frequency with coded excitation for elastography (TFCCE) was proposed. TFCCE adopts the chirp signal excitation scheme and strikes a balance in the selection of sub-signal bandwidth, the bandwidth overlap and the number of sub-strain image based on theoretical derivation, so as to further improve the quality of elastic image. Experiments have proved that, compared with the other optimizing methods, the elastographyic signal-to-noise ratio(Re-SN) and contrast-to-noise ratio(Re-CN) are improved significantly with different echo signal-to-noise ratios (ReSN) and attenuation coefficients. When ReSN is 50 dB, compared with short pulse, Rc-SN and Re-CN obtained by TFCCE increase by 53% and 143%, respectively. Moreover, in a deeper investigation (85-95 mm), the image has lower strain noise and clear details. When the attenuation coefficient is in the range of 0-1 dB/(cm.MHz), Re-SN and Re-CN obtained by TFCCE can be kept in moderate ranges of 5〈Re-SN〈6.8 and 11.4〈Re-CN〈15.2, respectively. In particular, for higher tissue attenuation, the basic image quality cannot be ensured with short pulse excitation, while mediocre quality strain figure can be obtained by TFCCE. Therefore, the TFCCE technology can effectively improve the elastography quality and can be applied to ultrasonic clinical trials.展开更多
Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effectiv...Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effective treatment and avoid over-high temperature. Proposed in this paper is a method to modulate the temperature distribution in the focal region. It superimposes two signals which focus on two preset different targets with a certain distance. Then the temperature distribution is modulated by changing triggering time delay and amplitudes of the two signals. The simulation model is established based on an 82-element transducer and computed tomography (CT) data of a volunteer's head. A finite- difference time-domain (FDTD) method is used to calculate the temperature distributions. The results show that when the distances between the two targets respectively are 7.5-12.5 mm on the acoustic axis and 2.0-3.0 mm in the direction perpendicular to the acoustic axis, a focal region with a uniform temperature distribution (64-65 ℃) can be created. Moreover, the volume of the focal region formed by one irradiation can be adjusted (26.8-266.7 mm3) along with the uniform temperature distribution. This method may ensure the safety and efficacy of HIFU brain tumor therapy.展开更多
This paper reported a compact system of capacitively coupled contactless conductivity detection (C4D) based on the square wave excitation voltage for capillary electrophoresis, and it exhibited excellent sensitivity...This paper reported a compact system of capacitively coupled contactless conductivity detection (C4D) based on the square wave excitation voltage for capillary electrophoresis, and it exhibited excellent sensitivity at the optimal frequency of 198 kHz. The feasibility and sensitivity of this detector was demonstrated by simultaneous detection of thirteen ions including alkali, alkaline earth and heavy metal ions. And the detection limits (S/N 3) were in the range of 0.2-1μmol/L for Mn^2+, K^+, Na^+, Mg^2+, Ca^2+, Li^+, Ba^2+, and 7-25 μmol/L for Ni^2+, Cu^2+, Cd^2+, Pb^2+, Co^2+, Zn^2+.展开更多
As this is the first time a large volume airgun has been excited in the "Yangtse River Geoscience Project",it is necessary to study the time-frequency characteristic based on the linear stacked seismic data ...As this is the first time a large volume airgun has been excited in the "Yangtse River Geoscience Project",it is necessary to study the time-frequency characteristic based on the linear stacked seismic data from records from portable stations near the fixed fields and seismic stations. Airgun signal propagation distances were detected using stacked seismic data to analyze the environmental impact on signal propagation distance. The results showed that:( 1) the airgun signal produced by bubble pulses,pressure pulses and the surface wave can be received by a portable station near the fixed field;( 2) the dominant frequency of a bubble at 5Hz or so can be received by both near-field stations and far-field stations,pressure pulses rapidly weaken and the dominant frequency bands get narrower as epicentral distance increases;( 3) the longest spread distance of signal is 260 km,the nearest is 180 km,and the signal can travel further in the evening.展开更多
For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map...The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
AIM:To retrospectively and prospectively compare diffusion-weighted(DW)images in the abdomen in a1.5T system and 3.0T systems with and without twochannel functionality for B1shimming.METHODS:DW images of the abdomen w...AIM:To retrospectively and prospectively compare diffusion-weighted(DW)images in the abdomen in a1.5T system and 3.0T systems with and without twochannel functionality for B1shimming.METHODS:DW images of the abdomen were obtained on 1.5T and 3.0T(with and without two-channel functionality for B1shimming)scanners on 150 patients(retrospective study population)and 10 volunteers(prospective study population).Eight regions were selected for clinical significance or artifact susceptibility(at higher field strengths).Objective grading quantified signal-to-noise ratio(SNR),and subjective evaluation qualified image quality,ghosting artifacts,anddiagnostic value.Statistical significance was calculated usingχ2tests(categorical variables)and independent two-sided t tests or Mann-Whitney U tests(continuous variables).RESULTS:The 3.0T using dual-source parallel transmit(dpTX 3.0T)provided the significantly highest SNRs in nearly all regions.In regions susceptible to artifacts at higher field strengths(left lobe of liver,head of pancreas),the SNR was better or similar to the 1.5T system.Subjectively,both dpTX 3.0T and 1.5T systems provided higher image quality,diagnostic value,and less ghosting artifact(P【0.01,most values)compared to the 3.0T system without dual-source parallel transmit(non-dpTX 3.0T).CONCLUSION:The dpTX 3.0T scanner provided the highest SNR.Its image quality,lack of ghosting,and diagnostic value were equal to or outperformed most currently used systems.展开更多
It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of ex-cessive calcium ion (Ca2+) entry in central neu-rons, which may activate degradative processes and thereby cause cell death. T...It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of ex-cessive calcium ion (Ca2+) entry in central neu-rons, which may activate degradative processes and thereby cause cell death. Therefore, NMD- ARs are now recognized to play a key role in the development of many diseases associated with injuries to the central nervous system (CNS). However, it remains a mystery how NMDAR ac-tivity is recruited in the cellular processes leading to excitotoxicity and how NMDAR activ-ity can be controlled at a physiological level. The sodium ion (Na+) is the major cation in ex-tracellular space. With its entry into the cell, Na+ can act as a critical intracellular second mes-senger that regulates many cellular functions. Recent data have shown that intracellular Na+ can be an important signaling factor underlying the up-regulation of NMDARs. While Ca2+ influx during the activation of NMDARs down-regu-lates NMDAR activity, Na+ influx provides an essential positive feedback mechanism to over- come Ca2+-induced inhibition and thereby po-tentiate both NMDAR activity and inward Ca2+ flow. Extensive investigations have been con-ducted to clarify mechanisms underlying Ca2+- mediated signaling. This review focuses on the roles of Na+ in the regulation of Ca2+-mediated NMDAR signaling and toxicity.展开更多
The“synchronous impact”is a phenomenon that increases the dynamic load of the inter-shaft bearing,when the frequency of the aerodynamic excitation is close to the contact frequency of the inter-shaft bearing.This wo...The“synchronous impact”is a phenomenon that increases the dynamic load of the inter-shaft bearing,when the frequency of the aerodynamic excitation is close to the contact frequency of the inter-shaft bearing.This work addresses the“synchronous impact”phenomenon of an aero-engine.The 104 degree-of-freedom dynamical model of an aero-engine is established by the finite element method,in which the complex nonlinearity of the Hertzian contact force of the inter-shaft bearing with clearance is included,and the multi-frequency excitations such as the unbalanced excitations of the high-and low-pressure rotors and the aerodynamic excitation are considered.A harmonic balance method combined with the alternating frequency time-domain method(HB-AFT)is introduced to obtain periodic responses of the high-dimension complex nonlinear dual-rotor system.The results show that there emerges a peak value of the amplitude-frequency response for the contact frequency harmonic component of the outer ring of the inter-shaft bearing,when the aerodynamic excitation frequency is close to the contact frequency.In addition,the dynamic load of the inter-shaft bearing increases significantly.Moreover,the parametric analysis shows that the“synchronous impact”phenomenon is sensitive to the change of the speed ratio of the high-and low-pressure rotors.The dynamic load of inter-shaft bearing can be significantly reduced by changing the speed ratio by 1%.The results obtained in this paper not only provide more insight into the mechanism of the“synchronous impact”phenomenon but also demonstrate the HBAFT method as a potential semi-analytical tool to explore the high-dimension complex nonlinear system.展开更多
An iterative identification and control design method based on v-gap is given to ensure the stability of closed-loop system and control performance improvement. The whole iterative procedure includes three parts: the...An iterative identification and control design method based on v-gap is given to ensure the stability of closed-loop system and control performance improvement. The whole iterative procedure includes three parts: the optimal excitation signals design, the uncertainty model set identification and the stable controller design. Firstly the worst case v-gap is used as the criterion of the optimal excitation signals design, and the design is performed via the power spectrum optimization. And then, an uncertainty model set is attained by system identification on the basis of the measure signals. The controller is designed to ensure the stability of closed-loop system and the closed-loop performance improvement. Simulation result shows that the proposed method has good convergence and closed-loop control performance.展开更多
文摘Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.
基金Project(2013GZX0147-3) supported by the Natural Science Foundation of Sichuan Province,China
文摘To improve the quality of ultrasonic elastography, by taking the advantage of code excitation and frequency compounding, a transmitting-side multi-frequency with coded excitation for elastography (TFCCE) was proposed. TFCCE adopts the chirp signal excitation scheme and strikes a balance in the selection of sub-signal bandwidth, the bandwidth overlap and the number of sub-strain image based on theoretical derivation, so as to further improve the quality of elastic image. Experiments have proved that, compared with the other optimizing methods, the elastographyic signal-to-noise ratio(Re-SN) and contrast-to-noise ratio(Re-CN) are improved significantly with different echo signal-to-noise ratios (ReSN) and attenuation coefficients. When ReSN is 50 dB, compared with short pulse, Rc-SN and Re-CN obtained by TFCCE increase by 53% and 143%, respectively. Moreover, in a deeper investigation (85-95 mm), the image has lower strain noise and clear details. When the attenuation coefficient is in the range of 0-1 dB/(cm.MHz), Re-SN and Re-CN obtained by TFCCE can be kept in moderate ranges of 5〈Re-SN〈6.8 and 11.4〈Re-CN〈15.2, respectively. In particular, for higher tissue attenuation, the basic image quality cannot be ensured with short pulse excitation, while mediocre quality strain figure can be obtained by TFCCE. Therefore, the TFCCE technology can effectively improve the elastography quality and can be applied to ultrasonic clinical trials.
基金Project supported by the National Natural Science Foundation of China(Grant No.81272495)the Natural Science Foundation of Tianjin,China(Grant No.16JC2DJC32200)
文摘Recently, the phase compensation technique has allowed the ultrasound to propagate through the skull and focus into the brain. However, the temperature evolution during treatment is hard to control to achieve effective treatment and avoid over-high temperature. Proposed in this paper is a method to modulate the temperature distribution in the focal region. It superimposes two signals which focus on two preset different targets with a certain distance. Then the temperature distribution is modulated by changing triggering time delay and amplitudes of the two signals. The simulation model is established based on an 82-element transducer and computed tomography (CT) data of a volunteer's head. A finite- difference time-domain (FDTD) method is used to calculate the temperature distributions. The results show that when the distances between the two targets respectively are 7.5-12.5 mm on the acoustic axis and 2.0-3.0 mm in the direction perpendicular to the acoustic axis, a focal region with a uniform temperature distribution (64-65 ℃) can be created. Moreover, the volume of the focal region formed by one irradiation can be adjusted (26.8-266.7 mm3) along with the uniform temperature distribution. This method may ensure the safety and efficacy of HIFU brain tumor therapy.
基金support from the National Natural Science Foundation of China(No.20475018)the Key Program of Guangdong Natural Science Foundation(No.05103552)
文摘This paper reported a compact system of capacitively coupled contactless conductivity detection (C4D) based on the square wave excitation voltage for capillary electrophoresis, and it exhibited excellent sensitivity at the optimal frequency of 198 kHz. The feasibility and sensitivity of this detector was demonstrated by simultaneous detection of thirteen ions including alkali, alkaline earth and heavy metal ions. And the detection limits (S/N 3) were in the range of 0.2-1μmol/L for Mn^2+, K^+, Na^+, Mg^2+, Ca^2+, Li^+, Ba^2+, and 7-25 μmol/L for Ni^2+, Cu^2+, Cd^2+, Pb^2+, Co^2+, Zn^2+.
基金jointly sponsored by the Special Fund for Earthquake Scientific Research in the Public Welfare of China Earthquake Administration(2015419015)the National Natural Science Foundation of China(41474071)
文摘As this is the first time a large volume airgun has been excited in the "Yangtse River Geoscience Project",it is necessary to study the time-frequency characteristic based on the linear stacked seismic data from records from portable stations near the fixed fields and seismic stations. Airgun signal propagation distances were detected using stacked seismic data to analyze the environmental impact on signal propagation distance. The results showed that:( 1) the airgun signal produced by bubble pulses,pressure pulses and the surface wave can be received by a portable station near the fixed field;( 2) the dominant frequency of a bubble at 5Hz or so can be received by both near-field stations and far-field stations,pressure pulses rapidly weaken and the dominant frequency bands get narrower as epicentral distance increases;( 3) the longest spread distance of signal is 260 km,the nearest is 180 km,and the signal can travel further in the evening.
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
文摘The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
文摘AIM:To retrospectively and prospectively compare diffusion-weighted(DW)images in the abdomen in a1.5T system and 3.0T systems with and without twochannel functionality for B1shimming.METHODS:DW images of the abdomen were obtained on 1.5T and 3.0T(with and without two-channel functionality for B1shimming)scanners on 150 patients(retrospective study population)and 10 volunteers(prospective study population).Eight regions were selected for clinical significance or artifact susceptibility(at higher field strengths).Objective grading quantified signal-to-noise ratio(SNR),and subjective evaluation qualified image quality,ghosting artifacts,anddiagnostic value.Statistical significance was calculated usingχ2tests(categorical variables)and independent two-sided t tests or Mann-Whitney U tests(continuous variables).RESULTS:The 3.0T using dual-source parallel transmit(dpTX 3.0T)provided the significantly highest SNRs in nearly all regions.In regions susceptible to artifacts at higher field strengths(left lobe of liver,head of pancreas),the SNR was better or similar to the 1.5T system.Subjectively,both dpTX 3.0T and 1.5T systems provided higher image quality,diagnostic value,and less ghosting artifact(P【0.01,most values)compared to the 3.0T system without dual-source parallel transmit(non-dpTX 3.0T).CONCLUSION:The dpTX 3.0T scanner provided the highest SNR.Its image quality,lack of ghosting,and diagnostic value were equal to or outperformed most currently used systems.
文摘It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of ex-cessive calcium ion (Ca2+) entry in central neu-rons, which may activate degradative processes and thereby cause cell death. Therefore, NMD- ARs are now recognized to play a key role in the development of many diseases associated with injuries to the central nervous system (CNS). However, it remains a mystery how NMDAR ac-tivity is recruited in the cellular processes leading to excitotoxicity and how NMDAR activ-ity can be controlled at a physiological level. The sodium ion (Na+) is the major cation in ex-tracellular space. With its entry into the cell, Na+ can act as a critical intracellular second mes-senger that regulates many cellular functions. Recent data have shown that intracellular Na+ can be an important signaling factor underlying the up-regulation of NMDARs. While Ca2+ influx during the activation of NMDARs down-regu-lates NMDAR activity, Na+ influx provides an essential positive feedback mechanism to over- come Ca2+-induced inhibition and thereby po-tentiate both NMDAR activity and inward Ca2+ flow. Extensive investigations have been con-ducted to clarify mechanisms underlying Ca2+- mediated signaling. This review focuses on the roles of Na+ in the regulation of Ca2+-mediated NMDAR signaling and toxicity.
基金supported by the National Natural Science Foundation of China(Grant No.11972129)the National Major Science and Technology Projects of China(Grant No.2017-IV-0008-0045)+1 种基金Department of Science&Technology of Liaoning Province(Grant No.2019BS182)the Educational Department of Liaoning Province(Grant No.LJGD2019009)。
文摘The“synchronous impact”is a phenomenon that increases the dynamic load of the inter-shaft bearing,when the frequency of the aerodynamic excitation is close to the contact frequency of the inter-shaft bearing.This work addresses the“synchronous impact”phenomenon of an aero-engine.The 104 degree-of-freedom dynamical model of an aero-engine is established by the finite element method,in which the complex nonlinearity of the Hertzian contact force of the inter-shaft bearing with clearance is included,and the multi-frequency excitations such as the unbalanced excitations of the high-and low-pressure rotors and the aerodynamic excitation are considered.A harmonic balance method combined with the alternating frequency time-domain method(HB-AFT)is introduced to obtain periodic responses of the high-dimension complex nonlinear dual-rotor system.The results show that there emerges a peak value of the amplitude-frequency response for the contact frequency harmonic component of the outer ring of the inter-shaft bearing,when the aerodynamic excitation frequency is close to the contact frequency.In addition,the dynamic load of the inter-shaft bearing increases significantly.Moreover,the parametric analysis shows that the“synchronous impact”phenomenon is sensitive to the change of the speed ratio of the high-and low-pressure rotors.The dynamic load of inter-shaft bearing can be significantly reduced by changing the speed ratio by 1%.The results obtained in this paper not only provide more insight into the mechanism of the“synchronous impact”phenomenon but also demonstrate the HBAFT method as a potential semi-analytical tool to explore the high-dimension complex nonlinear system.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60574055, 60874073)the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20050056037)the Tianjin Science and Technology Keystone Project (Grant No.08ZCKFJC27900)
文摘An iterative identification and control design method based on v-gap is given to ensure the stability of closed-loop system and control performance improvement. The whole iterative procedure includes three parts: the optimal excitation signals design, the uncertainty model set identification and the stable controller design. Firstly the worst case v-gap is used as the criterion of the optimal excitation signals design, and the design is performed via the power spectrum optimization. And then, an uncertainty model set is attained by system identification on the basis of the measure signals. The controller is designed to ensure the stability of closed-loop system and the closed-loop performance improvement. Simulation result shows that the proposed method has good convergence and closed-loop control performance.