Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on d...Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data.展开更多
In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate ...In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.展开更多
In order to more accurately detect the accuracy of word-wheel water meter digits, 2000 water meter pictures were produced, and an improved Faster-RCNN algorithm for detecting water meter digits was proposed. The impro...In order to more accurately detect the accuracy of word-wheel water meter digits, 2000 water meter pictures were produced, and an improved Faster-RCNN algorithm for detecting water meter digits was proposed. The improved Faster-RCNN algorithm uses ResNet50 combined with FPN (Feature Pyramid Network) structure instead of the original ResNet50 as the feature extraction network, which can enhance the accuracy of the model for small-sized digit recognition;the use of ROI Align instead of ROI Pooling can eliminate the error caused by the quantization process of the ROI Pooling twice, so that the candidate region is more accurately mapped to the feature map, and the accuracy of the model is further enhanced. The experiment proves that the improved Faster-RCNN algorithm can reach 91.8% recognition accuracy on the test set of homemade dataset, which meets the accuracy requirements of automatic meter reading technology for water meter digital recognition, which is of great significance for solving the problem of automatic meter reading of mechanical water meters and promoting the intelligent development of water meters.展开更多
This paper represents a case study of traffic congestion within a section on Al Seeb Street highway due to the on-ramp merging of vehicles that causes a bottleneck in the mainline road. It studies the efficiency of in...This paper represents a case study of traffic congestion within a section on Al Seeb Street highway due to the on-ramp merging of vehicles that causes a bottleneck in the mainline road. It studies the efficiency of installing ramp metering within a ramp within the selected study zone. This is done by simulating the collected data using Vissim software by drawing three one-hour-long scenarios;the first scenario reflects the data collected for 30 minutes duration and is used as a base scenario to draw the other two scenarios, which are reflected as factored-up scenarios to create a situation observed in the early morning in the study zone at 6:00-7:00 in which slowing down of speeds exist, and breakdown is raised in working days. The two factoring-up scenarios were as follows: one without ramp metering and the other without ramp metering. Each scenario was calibrated and run five times with random seeds, and then the average was considered. The simulation examines the ability of RM to smooth traffic in mainline and reduce queuing on on-ramp roads within the selected study zone by comparing the performance of the network for the scenarios and comparing them in terms of the overall delays, number of stops and the average speeds for the vehicles within the mainline. The results showed a good performance reflected by the scenario with ramp metering with a reduction of the overall delay, a decrease in stops number and an increase of the average speed were achieved. For the base scenario, a visualization (video extracted from Vissim software) was extracted, showing no need to install RM with an associated table showing a number of stops equal to zero with an average speed of 102.74 km/h and a total delay of 6045 seconds. For the second scenario with no RM, a visualization was extracted showing a slowing down of speeds for vehicles within the mainline while vehicles merging from the on-ramp and need to be controlled with a table showing a number of stops equal to 16 and an average speed equal to 58 km/h and a total delay of 916,874 seconds. For the third scenario with RM, a visualization was extracted showing good control of the second scenario with a table showing the number of stops equal to 6, an average speed equal to 61 km/h and a total delay equal to 484,466 seconds. Ten literatures in regard to this study have been reviewed. The data collected are quantitative, which are collected using an indirect manual counting method and then the data is used to feed the software for simulation.展开更多
The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facil...The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facilely fabricate the robust coating with multi-functions on magnesium alloys.The as-sprayed magnesium alloys surface is superhydrophobic with a static water contact angle(WCA)of 157.0°and a roll-off angle of 6.0°.Such surface has excellent mechanical,chemical and thermal stabilities,even undergoing various physical and chemical damages,including sand impact(10 gmin^(-1),≥20 min),water impact(2 impacts s^(-1),≥180 min),abrasion(1.00 kPa,≥25 cycles),peeling(≥2.15 kPa),high temperature(200°C,≥24 h),strong acidic/salty/basic media(p H=113)and organic-solvent immersion(ethanol and n-hexane,≥24 h),demonstrating brilliant robustness.Notably,the surface displays multi-functions of corrosion protection,anti-fouling and heat insulation,which will undoubtedly promote the much wider applications of magnesium alloys.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmo...Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.展开更多
A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in deta...A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.展开更多
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix ...Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.展开更多
A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-sect...A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by simulating the distribution histogram data obtained from the numerical finite element analysis values of a satellite component with sub-section Bezier curve. Being dealt with area normalization method, the simulation curve could be regarded as a kind of probability density function(PDF), its mathematical expectation and the variance could be used to evaluate the result of finite element analysis. Numerical experiments have indicated that the QDA method demonstrates the intrinsic characteristics of the finite element analysis of multi-functional structure made of honeycomb sandwich materials, as an appraisal method, it is effective and feasible.展开更多
We demonstrate a fiber-loop ring down multi-function sensors system, which can be used to measure refractive index and curvature simultaneously. Good agreement has been found between theoretical analyses and experimen...We demonstrate a fiber-loop ring down multi-function sensors system, which can be used to measure refractive index and curvature simultaneously. Good agreement has been found between theoretical analyses and experimental results. It has great potential for sensor applications.展开更多
In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining proc...In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining processes on one machine, have been developed and widely used in manufacturing industries. In this study, a multi-functional turning lathe, which has two spindles and two turrets so that multiple turning operations and various machining processes could be performed simultaneously, has been developed. Furthermore, the equations of correlation between whole responses and cross responses of the two spindles have been derived to examine to what extent the two spindles affect each other’s vibrations.展开更多
Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion cha...Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.展开更多
This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collect...This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collects these three independent surgical tools in a single laparoscopic appendectomy device.These days there is a trend of moving to multi-functional surgery devices during minimally invasive surgery.The main reasons behind the minimal invasive surgery are to avoid changing the devices several times during the operation,to reduce the time spent in operation,to increase the efficiency of the operation,to facilitate the follow-up of the camera and devices,and to leave trocars to be used for other surgical instruments.The multi-functional appendectomy device that,we present here,provides these benefits.The standard trocar entries are appropriate for its usage.The presented multifunctional laparoscopic appendectomy device offers more practical use in comparison to individual devices.On the other hand,development of these multi-functional surgery devices can be directly enhanced to the robotic surgery devices.展开更多
The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agr...The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agriculture in mountain and marginal areas. The target was the recovering of an abandoned agricultural site, throughout its re-organisation, re-qualification and auto-sustainability, involving local citizens. This approach was based on three further broad functions such as environmental, economic and social purposes. This cooperation, that allows the capitalization of local knowledge and the forging of relationships between local and external sources of expertise, information and advice, is fundamental to the future of existing rural communities, in particular in mountain areas. The model proposed, with the elaboration of a management software and technical agronomic sheets, could be an incentive for the activities already present in that region and to stimulate new ones. The enhancing of the native ecological system, the biodiversity tutelage and the valorization of the knowledge of the territory is the basic requirement for the successful of any land management.展开更多
Multi-functioning in virtual monitoring and assessment of ultimate dynamics of thin-walled bridges is treated in present paper. The approach enables multiple functions in virtual monitoring of the bridges made of inte...Multi-functioning in virtual monitoring and assessment of ultimate dynamics of thin-walled bridges is treated in present paper. The approach enables multiple functions in virtual monitoring of the bridges made of integrated thin-walled members with their hierarchical configuration. Theoretical, numerical and experimental in situ assessments of the problem are presented. Some results of structural application are submitted.展开更多
The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can ...The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
文摘Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data.
文摘In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.
文摘In order to more accurately detect the accuracy of word-wheel water meter digits, 2000 water meter pictures were produced, and an improved Faster-RCNN algorithm for detecting water meter digits was proposed. The improved Faster-RCNN algorithm uses ResNet50 combined with FPN (Feature Pyramid Network) structure instead of the original ResNet50 as the feature extraction network, which can enhance the accuracy of the model for small-sized digit recognition;the use of ROI Align instead of ROI Pooling can eliminate the error caused by the quantization process of the ROI Pooling twice, so that the candidate region is more accurately mapped to the feature map, and the accuracy of the model is further enhanced. The experiment proves that the improved Faster-RCNN algorithm can reach 91.8% recognition accuracy on the test set of homemade dataset, which meets the accuracy requirements of automatic meter reading technology for water meter digital recognition, which is of great significance for solving the problem of automatic meter reading of mechanical water meters and promoting the intelligent development of water meters.
文摘This paper represents a case study of traffic congestion within a section on Al Seeb Street highway due to the on-ramp merging of vehicles that causes a bottleneck in the mainline road. It studies the efficiency of installing ramp metering within a ramp within the selected study zone. This is done by simulating the collected data using Vissim software by drawing three one-hour-long scenarios;the first scenario reflects the data collected for 30 minutes duration and is used as a base scenario to draw the other two scenarios, which are reflected as factored-up scenarios to create a situation observed in the early morning in the study zone at 6:00-7:00 in which slowing down of speeds exist, and breakdown is raised in working days. The two factoring-up scenarios were as follows: one without ramp metering and the other without ramp metering. Each scenario was calibrated and run five times with random seeds, and then the average was considered. The simulation examines the ability of RM to smooth traffic in mainline and reduce queuing on on-ramp roads within the selected study zone by comparing the performance of the network for the scenarios and comparing them in terms of the overall delays, number of stops and the average speeds for the vehicles within the mainline. The results showed a good performance reflected by the scenario with ramp metering with a reduction of the overall delay, a decrease in stops number and an increase of the average speed were achieved. For the base scenario, a visualization (video extracted from Vissim software) was extracted, showing no need to install RM with an associated table showing a number of stops equal to zero with an average speed of 102.74 km/h and a total delay of 6045 seconds. For the second scenario with no RM, a visualization was extracted showing a slowing down of speeds for vehicles within the mainline while vehicles merging from the on-ramp and need to be controlled with a table showing a number of stops equal to 16 and an average speed equal to 58 km/h and a total delay of 916,874 seconds. For the third scenario with RM, a visualization was extracted showing good control of the second scenario with a table showing the number of stops equal to 6, an average speed equal to 61 km/h and a total delay equal to 484,466 seconds. Ten literatures in regard to this study have been reviewed. The data collected are quantitative, which are collected using an indirect manual counting method and then the data is used to feed the software for simulation.
基金supported by the National Natural Science Foundation of China(21773019,21972012)the Graduate Research and Innovation Foundation of Chongqing(CYB18044)the sharing fund of Chongqing University s Large-scale Equipment
文摘The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facilely fabricate the robust coating with multi-functions on magnesium alloys.The as-sprayed magnesium alloys surface is superhydrophobic with a static water contact angle(WCA)of 157.0°and a roll-off angle of 6.0°.Such surface has excellent mechanical,chemical and thermal stabilities,even undergoing various physical and chemical damages,including sand impact(10 gmin^(-1),≥20 min),water impact(2 impacts s^(-1),≥180 min),abrasion(1.00 kPa,≥25 cycles),peeling(≥2.15 kPa),high temperature(200°C,≥24 h),strong acidic/salty/basic media(p H=113)and organic-solvent immersion(ethanol and n-hexane,≥24 h),demonstrating brilliant robustness.Notably,the surface displays multi-functions of corrosion protection,anti-fouling and heat insulation,which will undoubtedly promote the much wider applications of magnesium alloys.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金supported by grants from CAMS Innovation Fund for Medical Sciences(Grant No.:2021-I2M-1-026)Scientific Research Project of Tianjin Education Commission(Grant No.:2020KJ140)Tianjin Health Research Project(Grant No.:KJ20017)。
文摘Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.
基金This project was supported by China Postdoctoral Science Funds, Jiangsu Planned Projects for Postdoctoral Research Funds and Northeast Forestry University Research Funds.
文摘A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.:ZR2020QC250)China Agriculture Research System(Grant No.:CARS-38)+1 种基金Modern Agricultural Technology Industry System of Shandong Province(Grant No.:SDAIT10-10)Key Technology Research and Development Program of Shandong(Grant Nos.:2021CXGC010809 and 2021TZXD012).
文摘Ensuring food safety is paramount worldwide.Developing effective detection methods to ensure food safety can be challenging owing to trace hazards,long detection time,and resource-poor sites,in addition to the matrix effects of food.Personal glucose meter(PGM),a classic point-of-care testing device,possesses unique application advantages,demonstrating promise in food safety.Currently,many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards.Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors,which is crucial for solving the challenges associated with the use of PGMs for food safety analysis.This review introduces the basic detection principle of a PGM-based sensing strategy,which consists of three key factors:target recognition,signal transduction,and signal output.Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies(nanomaterial-loaded multienzyme labeling,nucleic acid reaction,DNAzyme catalysis,responsive nanomaterial encapsulation,and others)in the field of food safety detection are reviewed.Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed.Despite the need for complex sample preparation and the lack of standardization in the field,using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
基金Funded by the National Natural Science Foundation of China(No.61471024)National Marine Technology Program for Public Welfare,China(No.201505002-1)
文摘A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by simulating the distribution histogram data obtained from the numerical finite element analysis values of a satellite component with sub-section Bezier curve. Being dealt with area normalization method, the simulation curve could be regarded as a kind of probability density function(PDF), its mathematical expectation and the variance could be used to evaluate the result of finite element analysis. Numerical experiments have indicated that the QDA method demonstrates the intrinsic characteristics of the finite element analysis of multi-functional structure made of honeycomb sandwich materials, as an appraisal method, it is effective and feasible.
文摘We demonstrate a fiber-loop ring down multi-function sensors system, which can be used to measure refractive index and curvature simultaneously. Good agreement has been found between theoretical analyses and experimental results. It has great potential for sensor applications.
文摘In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining processes on one machine, have been developed and widely used in manufacturing industries. In this study, a multi-functional turning lathe, which has two spindles and two turrets so that multiple turning operations and various machining processes could be performed simultaneously, has been developed. Furthermore, the equations of correlation between whole responses and cross responses of the two spindles have been derived to examine to what extent the two spindles affect each other’s vibrations.
文摘Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.
文摘This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collects these three independent surgical tools in a single laparoscopic appendectomy device.These days there is a trend of moving to multi-functional surgery devices during minimally invasive surgery.The main reasons behind the minimal invasive surgery are to avoid changing the devices several times during the operation,to reduce the time spent in operation,to increase the efficiency of the operation,to facilitate the follow-up of the camera and devices,and to leave trocars to be used for other surgical instruments.The multi-functional appendectomy device that,we present here,provides these benefits.The standard trocar entries are appropriate for its usage.The presented multifunctional laparoscopic appendectomy device offers more practical use in comparison to individual devices.On the other hand,development of these multi-functional surgery devices can be directly enhanced to the robotic surgery devices.
文摘The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agriculture in mountain and marginal areas. The target was the recovering of an abandoned agricultural site, throughout its re-organisation, re-qualification and auto-sustainability, involving local citizens. This approach was based on three further broad functions such as environmental, economic and social purposes. This cooperation, that allows the capitalization of local knowledge and the forging of relationships between local and external sources of expertise, information and advice, is fundamental to the future of existing rural communities, in particular in mountain areas. The model proposed, with the elaboration of a management software and technical agronomic sheets, could be an incentive for the activities already present in that region and to stimulate new ones. The enhancing of the native ecological system, the biodiversity tutelage and the valorization of the knowledge of the territory is the basic requirement for the successful of any land management.
文摘Multi-functioning in virtual monitoring and assessment of ultimate dynamics of thin-walled bridges is treated in present paper. The approach enables multiple functions in virtual monitoring of the bridges made of integrated thin-walled members with their hierarchical configuration. Theoretical, numerical and experimental in situ assessments of the problem are presented. Some results of structural application are submitted.
文摘The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also