Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmo...Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.展开更多
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in deta...A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.展开更多
A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-sect...A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by simulating the distribution histogram data obtained from the numerical finite element analysis values of a satellite component with sub-section Bezier curve. Being dealt with area normalization method, the simulation curve could be regarded as a kind of probability density function(PDF), its mathematical expectation and the variance could be used to evaluate the result of finite element analysis. Numerical experiments have indicated that the QDA method demonstrates the intrinsic characteristics of the finite element analysis of multi-functional structure made of honeycomb sandwich materials, as an appraisal method, it is effective and feasible.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. ...We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.展开更多
Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion cha...Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.展开更多
In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining proc...In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining processes on one machine, have been developed and widely used in manufacturing industries. In this study, a multi-functional turning lathe, which has two spindles and two turrets so that multiple turning operations and various machining processes could be performed simultaneously, has been developed. Furthermore, the equations of correlation between whole responses and cross responses of the two spindles have been derived to examine to what extent the two spindles affect each other’s vibrations.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collect...This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collects these three independent surgical tools in a single laparoscopic appendectomy device.These days there is a trend of moving to multi-functional surgery devices during minimally invasive surgery.The main reasons behind the minimal invasive surgery are to avoid changing the devices several times during the operation,to reduce the time spent in operation,to increase the efficiency of the operation,to facilitate the follow-up of the camera and devices,and to leave trocars to be used for other surgical instruments.The multi-functional appendectomy device that,we present here,provides these benefits.The standard trocar entries are appropriate for its usage.The presented multifunctional laparoscopic appendectomy device offers more practical use in comparison to individual devices.On the other hand,development of these multi-functional surgery devices can be directly enhanced to the robotic surgery devices.展开更多
The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agr...The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agriculture in mountain and marginal areas. The target was the recovering of an abandoned agricultural site, throughout its re-organisation, re-qualification and auto-sustainability, involving local citizens. This approach was based on three further broad functions such as environmental, economic and social purposes. This cooperation, that allows the capitalization of local knowledge and the forging of relationships between local and external sources of expertise, information and advice, is fundamental to the future of existing rural communities, in particular in mountain areas. The model proposed, with the elaboration of a management software and technical agronomic sheets, could be an incentive for the activities already present in that region and to stimulate new ones. The enhancing of the native ecological system, the biodiversity tutelage and the valorization of the knowledge of the territory is the basic requirement for the successful of any land management.展开更多
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can ...The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietve...A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietveld refinement.The crystal field energy level splitting of Yb^(3+)in GdScO_(3) is determined by employing the absorption and photoluminescence spectra at 8 K.Only ^(2)F_(7/2)(4)is far from the ground state ^(2)F_(7/2)(1)by 710 cm-1 among the crystal field energy levels split from ^(2)F_(7/2),so it is more easier to realize the laser operation of ^(2)F5/2(1)^(2)F_(7/2)(4)with wavelength 1060 nm.The spin–orbit coupling parameters and intrinsic crystal field parameters(CFPs).The intrinsic crystal field parameters¯B k(k=2,4,6)of the crystal were fitted by the superposition model.The CFPs evaluated with¯Bk and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal,and the crystal field parameters Bk q are obtained finally with the root-mean-square deviation 9 cm-1.It is suggested that the ligand point charge,covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb^(3+)in GdScO_(3).The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO_(3) to analyze the mechanism of the luminescence or laser.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金supported by grants from CAMS Innovation Fund for Medical Sciences(Grant No.:2021-I2M-1-026)Scientific Research Project of Tianjin Education Commission(Grant No.:2020KJ140)Tianjin Health Research Project(Grant No.:KJ20017)。
文摘Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金This project was supported by China Postdoctoral Science Funds, Jiangsu Planned Projects for Postdoctoral Research Funds and Northeast Forestry University Research Funds.
文摘A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.
基金Funded by the National Natural Science Foundation of China(No.61471024)National Marine Technology Program for Public Welfare,China(No.201505002-1)
文摘A new appraisal method(QDA, quasi-distribution appraisal) which could be used to evaluate the finite element analysis of multi-functional structure made of honeycomb sandwich materials is developed based on sub-section Bezier curve. It is established by simulating the distribution histogram data obtained from the numerical finite element analysis values of a satellite component with sub-section Bezier curve. Being dealt with area normalization method, the simulation curve could be regarded as a kind of probability density function(PDF), its mathematical expectation and the variance could be used to evaluate the result of finite element analysis. Numerical experiments have indicated that the QDA method demonstrates the intrinsic characteristics of the finite element analysis of multi-functional structure made of honeycomb sandwich materials, as an appraisal method, it is effective and feasible.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
文摘We theoretically investigate the propagation characteristics of spin waves in skyrmion-based magnonic crystals. It is found that the dispersion relation can be manipulated by strains through magneto-elastic coupling. Especially, the allowed bands and forbidden bands in dispersion relations shift to higher frequency with strain changing from compressive to tensile,while shifting to lower frequency with strain changing from tensile to compressive. We also confirm that the spin wave with specific frequency can pass the magnonic crystal or be blocked by tuning the strains. The result provides an advanced platform for studying the tunable skyrmion-based spin wave devices.
文摘Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.
文摘In order to meet increasing demand for higher productivity and flexibility, recently many kinds of multi-functional machine tools, which are capable of multiple machining functions or different kinds of machining processes on one machine, have been developed and widely used in manufacturing industries. In this study, a multi-functional turning lathe, which has two spindles and two turrets so that multiple turning operations and various machining processes could be performed simultaneously, has been developed. Furthermore, the equations of correlation between whole responses and cross responses of the two spindles have been derived to examine to what extent the two spindles affect each other’s vibrations.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
文摘This study presents a design of a multifunctional laparoscopic appendectomy device that includes three surgical instruments commonly used in laparoscopic appendicitis surgeries:endoloop,endobag and scissors.It collects these three independent surgical tools in a single laparoscopic appendectomy device.These days there is a trend of moving to multi-functional surgery devices during minimally invasive surgery.The main reasons behind the minimal invasive surgery are to avoid changing the devices several times during the operation,to reduce the time spent in operation,to increase the efficiency of the operation,to facilitate the follow-up of the camera and devices,and to leave trocars to be used for other surgical instruments.The multi-functional appendectomy device that,we present here,provides these benefits.The standard trocar entries are appropriate for its usage.The presented multifunctional laparoscopic appendectomy device offers more practical use in comparison to individual devices.On the other hand,development of these multi-functional surgery devices can be directly enhanced to the robotic surgery devices.
文摘The experimental idea of the present project was elaborated in order to create a structure where different categories and institutions could collaborate, with the common aim to develop a sustainable and profitable agriculture in mountain and marginal areas. The target was the recovering of an abandoned agricultural site, throughout its re-organisation, re-qualification and auto-sustainability, involving local citizens. This approach was based on three further broad functions such as environmental, economic and social purposes. This cooperation, that allows the capitalization of local knowledge and the forging of relationships between local and external sources of expertise, information and advice, is fundamental to the future of existing rural communities, in particular in mountain areas. The model proposed, with the elaboration of a management software and technical agronomic sheets, could be an incentive for the activities already present in that region and to stimulate new ones. The enhancing of the native ecological system, the biodiversity tutelage and the valorization of the knowledge of the territory is the basic requirement for the successful of any land management.
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
文摘The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3605700 and 2023YFB3507403)the National Natural Science Foundation of China(Grant No.52272011)+2 种基金the Youth Innovation Promotion Association of CAS(Grant No.2023463)Plan for Anhui Major Provincial Science&Technology Project(Grant No.202203a05020002)Open Project of Advanced Laser Technology Laboratory of Anhui Province(Grant No.AHL20220ZR04).
文摘A good quality(5 at.%Yb:GdScO_(3))single crystal of F30 mm37 mm was grown successfully by the Czochralski method.Its structure is studied by the x-ray diffraction(XRD),and its atomic coordinates are obtained by Rietveld refinement.The crystal field energy level splitting of Yb^(3+)in GdScO_(3) is determined by employing the absorption and photoluminescence spectra at 8 K.Only ^(2)F_(7/2)(4)is far from the ground state ^(2)F_(7/2)(1)by 710 cm-1 among the crystal field energy levels split from ^(2)F_(7/2),so it is more easier to realize the laser operation of ^(2)F5/2(1)^(2)F_(7/2)(4)with wavelength 1060 nm.The spin–orbit coupling parameters and intrinsic crystal field parameters(CFPs).The intrinsic crystal field parameters¯B k(k=2,4,6)of the crystal were fitted by the superposition model.The CFPs evaluated with¯Bk and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal,and the crystal field parameters Bk q are obtained finally with the root-mean-square deviation 9 cm-1.It is suggested that the ligand point charge,covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb^(3+)in GdScO_(3).The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO_(3) to analyze the mechanism of the luminescence or laser.