To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four repres...To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.展开更多
In order to improve the safety of the battery of satellite side mounting,and prevent the screw from producing excess due to frequent assembly and disassembly,the YS-20 material replacement and structure optimization d...In order to improve the safety of the battery of satellite side mounting,and prevent the screw from producing excess due to frequent assembly and disassembly,the YS-20 material replacement and structure optimization design of the screw body are carried out under the premise of not changing the original tooling.The double⁃shear test of YS-20 bar is carried out,and the ANSYS optimization design module is used to design 7×7×6,a total of 294,calculation cases of D1,D2,T,the three important dimension parameters of screw structure.The actual bearing state of screw composite structure is accurately simulated by using asymmetric contact model.Three comprehensive evaluations are established,and the calculation examples satisfying the conditions are evaluated comprehensively.The final results are T=12.2 mm,D1=16 mm,D2=2 mm.The stress verification and contact analysis are carried out for the final scheme and the bearing state and contact state optimized screw structure are obtained.展开更多
Wetland park is an important mode of wetland protection, meanwhile, construction of comprehensive index system has become the hotspot and keystone of the researches on Wetland Parks. Basing on different development st...Wetland park is an important mode of wetland protection, meanwhile, construction of comprehensive index system has become the hotspot and keystone of the researches on Wetland Parks. Basing on different development stages, this paper firstly divided the Wetland Parks into three categories, including the start-up stage, the development stage and the refinement stage. And then screened and identified the direction and keypoints of comprehensive evaluation for wetland parks in different development stages using expert scoring, questionnaire and analytic hierarchy process(AHP).展开更多
Multi</span><span><span style="font-family:"">-</span></span><span><span style="font-family:"">goal and multi-objective optimizations are similar...Multi</span><span><span style="font-family:"">-</span></span><span><span style="font-family:"">goal and multi-objective optimizations are similar techniques to</span></span><span><span style="font-family:""> achieve <span>multiple conflicting goals/objectives simultaneously. There are several tech</span>niques <span>for solving multi-goal and multi-objective optimization problems. The</span> <span>present </span><span>study proposed the possibility of convertibility in solving multi-goal and mul</span>ti-objective optimization problems.展开更多
Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usa...Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.展开更多
The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms ...The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.展开更多
The urban comprehensive park is the main body of the urban environment construction, and the plant landscape is the most important landscape element of the comprehensive park. It is helpful for the landscape design of...The urban comprehensive park is the main body of the urban environment construction, and the plant landscape is the most important landscape element of the comprehensive park. It is helpful for the landscape design of the comprehensive park to improve the environmental quality and the sustainable development of the city. Taking the "Nanjiang Park" in Xiaoshan District of Hangzhou as the research object, the landscape design of plants was explored and analyzed. The results showed that there were significant differences in the application forms of plant land- scapes in different functional zones in comprehensive parks. The specific forms of the garden elements had different needs of plant landscape construction. According to the results of case studies, it found that comprehensive parks could improve the functions, create the aesthetic sense, enhance the atmosphere and enhance the taste through plant landscape design. In addition, corresponding suggestions were put forward according to the current situation with the aim to provide references for the future plant landscape design related with garden greens.展开更多
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
[Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to o...[Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to optimize the parameters of uniform comprehensive rainstorm intensity formula in every return period and directly construct the comprehensive rainstorm intensity formula.Moreover,took the comprehensive rainstorm intensity formula which was established by the hourly precipitation data in wuhu City as an example,the calculation result compared with the computed result of traditional method.[Result] The calculation result precision of particle swarm algorithm was higher than the traditional method,and the calculation process was simpler.[Conclusion] The particle swarm algorithm could directly construct the comprehensive rainstorm intensity formula.展开更多
Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem ...Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.展开更多
In this paper,a controllable leakage flux reverse salient permanent magnet synchronous motor(CLF-RSPMSM)is designed,which has the advantages of wide speed range and low irreversible demagnetization risk.Firstly,the pr...In this paper,a controllable leakage flux reverse salient permanent magnet synchronous motor(CLF-RSPMSM)is designed,which has the advantages of wide speed range and low irreversible demagnetization risk.Firstly,the principle of controllable leakage flux and reverse saliency effect is introduced,and the design of the rotor flux barrier is emphatically discussed.Secondly,multiple design variables are stratified by the comprehensive sensitivity method,and the main variables are screened out.Then the relationship between the main variables and the optimization goal is discussed according to the response surface diagram.Thirdly,a sequential nonlinear programming algorithm(SNP)is used to optimize the three optimization objectives comprehensively.Finally,the electromagnetic performance of the proposed motor is compared with the initial IPM motor,the mechanical strength of the proposed rotor is analyzed,and the results verify the effectiveness of the design and optimization method of the proposed motor.展开更多
In communication networks with policy-based Transport Control on-Demand (TCoD) function,the transport control policies play a great impact on the network effectiveness. To evaluate and optimize the transport policies ...In communication networks with policy-based Transport Control on-Demand (TCoD) function,the transport control policies play a great impact on the network effectiveness. To evaluate and optimize the transport policies in communication network,a policy-based TCoD network model is given and a comprehensive evaluation index system of the network effectiveness is put forward from both network application and handling mechanism perspectives. A TCoD network prototype system based on Asynchronous Transfer Mode/Multi-Protocol Label Switching (ATM/MPLS) is introduced and some experiments are performed on it. The prototype system is evaluated and analyzed with the comprehensive evaluation index system. The results show that the index system can be used to judge whether the communication network can meet the application requirements or not,and can provide references for the optimization of the transport policies so as to improve the communication network effectiveness.展开更多
Due to the correlation and diversity of robotic kinematic dexterity indexes, the principal component analysis (PCA) and kernel principal component analysis (KPCA) based on linear dimension reduction and nonlinear ...Due to the correlation and diversity of robotic kinematic dexterity indexes, the principal component analysis (PCA) and kernel principal component analysis (KPCA) based on linear dimension reduction and nonlinear dimension reduction principle could be respectively introduced into comprehensive kinematic dexterity performance evaluation of space 3R robot of different tasks. By comparing different dimension reduction effects, the KPCA method could deal more effectively with the nonlinear relationship among different single kinematic dexterity indexes, and its calculation result is more reasonable for containing more comprehensive information. KPCA' s calculation provides scientific basis for optimum order of robotic tasks, and furthermore a new optimization method for robotic task selection is proposed based on various performance indexes.展开更多
In order to find the optimal combination of process parameters for laser cladding 304L alloy powder on the surface of 45 steel,a combination method of single factor test and multi-factor orthogonal experiment was used...In order to find the optimal combination of process parameters for laser cladding 304L alloy powder on the surface of 45 steel,a combination method of single factor test and multi-factor orthogonal experiment was used to perform the single pulse laser cladding experiment.The effects of process parameters(pulse current A,pulse width B,pulse frequency C,defocus distance D,scan velocity E)on the morphology and performance of cladding layer was studied by range analysis,and the optimal combination of cladding parameters is calculated by fuzzy comprehensive evaluation.The results show that different process parameters have different effects on the morphology of the cladding layer and scanning velocity E and defocus distance D are the most important influencing factor of cladding morphology.The effect on cladding width is D>C>A>B>E and the effect on cladding height is E>A>C>D>B.The optimal combination of cladding width is A4B4C4D4E2.The optimal combination of cladding high is A2B1C1D4E1.The comprehensive optimal process parameters are pulse current 210A,pulse width 3.6ms,pulse frequency 16Hz,defocus distance+10mm and scanning speed 240mm/min.The average hardness of the cladding layer,melting pool,heat-affected zone and substrate under the optimal process parameters is 406.2 HV0.5,470.8 HV0.5,230.5HV0.5 and 202.0HV0.5,respectively.The 304L cladding layer on 45 steel surface is stable in width,height and surface quality under comprehensive optimal parameters.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t...As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
文摘To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.
文摘In order to improve the safety of the battery of satellite side mounting,and prevent the screw from producing excess due to frequent assembly and disassembly,the YS-20 material replacement and structure optimization design of the screw body are carried out under the premise of not changing the original tooling.The double⁃shear test of YS-20 bar is carried out,and the ANSYS optimization design module is used to design 7×7×6,a total of 294,calculation cases of D1,D2,T,the three important dimension parameters of screw structure.The actual bearing state of screw composite structure is accurately simulated by using asymmetric contact model.Three comprehensive evaluations are established,and the calculation examples satisfying the conditions are evaluated comprehensively.The final results are T=12.2 mm,D1=16 mm,D2=2 mm.The stress verification and contact analysis are carried out for the final scheme and the bearing state and contact state optimized screw structure are obtained.
基金National Natural Science Foundation(Project Number:41101080)Natural Science Foundation of Shandong Province(Project Number:ZR2014DQ028/ZR2015DM004)
文摘Wetland park is an important mode of wetland protection, meanwhile, construction of comprehensive index system has become the hotspot and keystone of the researches on Wetland Parks. Basing on different development stages, this paper firstly divided the Wetland Parks into three categories, including the start-up stage, the development stage and the refinement stage. And then screened and identified the direction and keypoints of comprehensive evaluation for wetland parks in different development stages using expert scoring, questionnaire and analytic hierarchy process(AHP).
文摘Multi</span><span><span style="font-family:"">-</span></span><span><span style="font-family:"">goal and multi-objective optimizations are similar techniques to</span></span><span><span style="font-family:""> achieve <span>multiple conflicting goals/objectives simultaneously. There are several tech</span>niques <span>for solving multi-goal and multi-objective optimization problems. The</span> <span>present </span><span>study proposed the possibility of convertibility in solving multi-goal and mul</span>ti-objective optimization problems.
基金the Scientific Research Funding Project of Liaoning Education Department of China under Grant No.JDL2020005,No.LJKZ0485the National Key Research and Development Program of China under Grant No.2018YFA0704605.
文摘Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications.
基金Supported by the Science and Technology Support Key Project of 12th Five-Year of China(2011BAD20B00-4)~~
文摘The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.
文摘The urban comprehensive park is the main body of the urban environment construction, and the plant landscape is the most important landscape element of the comprehensive park. It is helpful for the landscape design of the comprehensive park to improve the environmental quality and the sustainable development of the city. Taking the "Nanjiang Park" in Xiaoshan District of Hangzhou as the research object, the landscape design of plants was explored and analyzed. The results showed that there were significant differences in the application forms of plant land- scapes in different functional zones in comprehensive parks. The specific forms of the garden elements had different needs of plant landscape construction. According to the results of case studies, it found that comprehensive parks could improve the functions, create the aesthetic sense, enhance the atmosphere and enhance the taste through plant landscape design. In addition, corresponding suggestions were put forward according to the current situation with the aim to provide references for the future plant landscape design related with garden greens.
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
基金Supported by The College Management Science Research Project of Chengdu University of Information Technology (CRF200804)The Project of Sichuan Education Department (07ZB014)
文摘[Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to optimize the parameters of uniform comprehensive rainstorm intensity formula in every return period and directly construct the comprehensive rainstorm intensity formula.Moreover,took the comprehensive rainstorm intensity formula which was established by the hourly precipitation data in wuhu City as an example,the calculation result compared with the computed result of traditional method.[Result] The calculation result precision of particle swarm algorithm was higher than the traditional method,and the calculation process was simpler.[Conclusion] The particle swarm algorithm could directly construct the comprehensive rainstorm intensity formula.
文摘Considering the flexible attitude maneuver and the narrow field of view of agile Earth observation satellite(AEOS)together,a comprehensive task clustering(CTC)is proposed to improve the observation scheduling problem for AEOS(OSPFAS).Since the observation scheduling problem for AEOS with comprehensive task clustering(OSWCTC)is a dynamic combination optimization problem,two optimization objectives,the loss rate(LR)of the image quality and the energy consumption(EC),are proposed to format OSWCTC as a bi-objective optimization model.Harnessing the power of an adaptive large neighborhood search(ALNS)algorithm with a nondominated sorting genetic algorithm II(NSGA-II),a bi-objective optimization algorithm,ALNS+NSGA-II,is developed to solve OSWCTC.Based on the existing instances,the efficiency of ALNS+NSGA-II is analyzed from several aspects,meanwhile,results of extensive computational experiments are presented which disclose that OSPFAS considering CTC produces superior outcomes.
基金This work was supported by the National Natural Science Foundation of China under Grant no.52067008in part by the Plan Project of Jiangxi Province of P.R.China under grant no.GJJ160598 and 20181BAB206035,and in part by the Program of Qingjiang Excellent Young Talents.
文摘In this paper,a controllable leakage flux reverse salient permanent magnet synchronous motor(CLF-RSPMSM)is designed,which has the advantages of wide speed range and low irreversible demagnetization risk.Firstly,the principle of controllable leakage flux and reverse saliency effect is introduced,and the design of the rotor flux barrier is emphatically discussed.Secondly,multiple design variables are stratified by the comprehensive sensitivity method,and the main variables are screened out.Then the relationship between the main variables and the optimization goal is discussed according to the response surface diagram.Thirdly,a sequential nonlinear programming algorithm(SNP)is used to optimize the three optimization objectives comprehensively.Finally,the electromagnetic performance of the proposed motor is compared with the initial IPM motor,the mechanical strength of the proposed rotor is analyzed,and the results verify the effectiveness of the design and optimization method of the proposed motor.
基金Supported by the National 863 Program (No.2007AA-701210)
文摘In communication networks with policy-based Transport Control on-Demand (TCoD) function,the transport control policies play a great impact on the network effectiveness. To evaluate and optimize the transport policies in communication network,a policy-based TCoD network model is given and a comprehensive evaluation index system of the network effectiveness is put forward from both network application and handling mechanism perspectives. A TCoD network prototype system based on Asynchronous Transfer Mode/Multi-Protocol Label Switching (ATM/MPLS) is introduced and some experiments are performed on it. The prototype system is evaluated and analyzed with the comprehensive evaluation index system. The results show that the index system can be used to judge whether the communication network can meet the application requirements or not,and can provide references for the optimization of the transport policies so as to improve the communication network effectiveness.
基金Supported by the National Natural Science Foundation of China(No.51075005)the Beijing City Science and Technology Project(No.Z131100005313009)
文摘Due to the correlation and diversity of robotic kinematic dexterity indexes, the principal component analysis (PCA) and kernel principal component analysis (KPCA) based on linear dimension reduction and nonlinear dimension reduction principle could be respectively introduced into comprehensive kinematic dexterity performance evaluation of space 3R robot of different tasks. By comparing different dimension reduction effects, the KPCA method could deal more effectively with the nonlinear relationship among different single kinematic dexterity indexes, and its calculation result is more reasonable for containing more comprehensive information. KPCA' s calculation provides scientific basis for optimum order of robotic tasks, and furthermore a new optimization method for robotic task selection is proposed based on various performance indexes.
基金This work was supported by the National Natural Science Foundation of China(No.51505268)Key project of shaanxi provincial science and technology department(2017ZDXM-GY-138)Shaanxi provincial education department special research program(16JK1139).
文摘In order to find the optimal combination of process parameters for laser cladding 304L alloy powder on the surface of 45 steel,a combination method of single factor test and multi-factor orthogonal experiment was used to perform the single pulse laser cladding experiment.The effects of process parameters(pulse current A,pulse width B,pulse frequency C,defocus distance D,scan velocity E)on the morphology and performance of cladding layer was studied by range analysis,and the optimal combination of cladding parameters is calculated by fuzzy comprehensive evaluation.The results show that different process parameters have different effects on the morphology of the cladding layer and scanning velocity E and defocus distance D are the most important influencing factor of cladding morphology.The effect on cladding width is D>C>A>B>E and the effect on cladding height is E>A>C>D>B.The optimal combination of cladding width is A4B4C4D4E2.The optimal combination of cladding high is A2B1C1D4E1.The comprehensive optimal process parameters are pulse current 210A,pulse width 3.6ms,pulse frequency 16Hz,defocus distance+10mm and scanning speed 240mm/min.The average hardness of the cladding layer,melting pool,heat-affected zone and substrate under the optimal process parameters is 406.2 HV0.5,470.8 HV0.5,230.5HV0.5 and 202.0HV0.5,respectively.The 304L cladding layer on 45 steel surface is stable in width,height and surface quality under comprehensive optimal parameters.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.52107107).
文摘As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.