Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd st...Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes,which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades.Trajectory clustering has become one of the most popular methods in VMS.However,complex data,such as a large number of samples and parameters,makes it difficult for trajectory clustering to work well with accurate motion segmentation results.This study introduces a spatial-angular stacked sparse autoencoder model(SA-SSAE)with l2-regularization and softmax,a powerful deep learning method for visual motion segmentation to cluster similar motion patterns that belong to the same cluster.The proposed model can extract meaningful high-level features using only spatial-angular features obtained from refined tracklets(a.k.a‘trajectories’).We adopt l2-regularization and sparsity regularization,which can learn sparse representations of features,to guarantee the sparsity of the autoencoders.We employ the softmax layer to map the data points into accurate cluster representations.One of the best advantages of the SA-SSAE framework is it can manage VMS even when individuals move around randomly.This framework helps cluster the motion patterns effectively with higher accuracy.We put forward a new dataset with itsmanual ground truth,including 21 crowd videos.Experiments conducted on two crowd benchmarks demonstrate that the proposed model can more accurately group trajectories than the traditional clustering approaches used in previous studies.The proposed SA-SSAE framework achieved a 0.11 improvement in accuracy and a 0.13 improvement in the F-measure compared with the best current method using the CUHK dataset.展开更多
In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentati...In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentation. First the MV field is temporally and spatially normalized, and then accumulated by an iterative backward projection to enhance salient motions and alleviate noisy MVs. The accumulated MV field is then segmented into motion-homogenous regions using a modified statistical region growing approach. Finally, moving object regions are extracted in turn based on minimization of the joint prediction error using the estimated motion models of two region sets containing the candidate object region and other remaining regions, respectively. Experimental results on several H.264 compressed video sequences demonstrate good segmentation performance.展开更多
Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging...Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling.展开更多
This paper proposes a motion-based region growing segmentation scheme for the object-based video coding, which segments an image into homogeneous regions characterized by a coherent motion. It adopts a block matching ...This paper proposes a motion-based region growing segmentation scheme for the object-based video coding, which segments an image into homogeneous regions characterized by a coherent motion. It adopts a block matching algorithm to estimate motion vectors and uses morphological tools such as open-close by reconstruction and the region-growing version of the watershed algorithm for spatial segmentation to improve the temporal segmentation. In order to determine the reliable motion vectors, this paper also proposes a change detection algorithm and a multi-candidate pro- screening motion estimation method. Preliminary simulation results demonstrate that the proposed scheme is feasible. The main advantage of the scheme is its low computational load.展开更多
Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from ...Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from a statistic camera. Some existing algorithms cannot adapt to changing circumstances and require manual calibration in terms of specification of parameters or some hypotheses for changing background. An adaptive motion segmentation method is developed according to motion variation and chromatic characteristics, which prevents undesired corruption of the background model and does not consider the adaptation coefficient. RGB color space is selected instead of introducing complex color models to segment moving objects and suppress shadows. A color ratio for 4-connected neighbors of a pixel and multi-scale wavelet transformation are combined to suppress shadows. The mentioned approach is scene-independent and high correct segmentation. It has been shown that the approach is robust and efficient to detect moving objects by experiments.展开更多
A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descrip...A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.展开更多
In this paper, we present a motion segmentation approach based on the subspace segmentation technique, the genera-lized PCA. By incorporating the cues from the neighborhood of intensity edges of images, motion segment...In this paper, we present a motion segmentation approach based on the subspace segmentation technique, the genera-lized PCA. By incorporating the cues from the neighborhood of intensity edges of images, motion segmentation is solved under an algebra framework. Our main contribution is to propose a post-processing procedure, which can detect the boundaries of motion layers and further determine the layer ordering. Test results on real imagery have confirmed the validity of our method.展开更多
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well underst...As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.展开更多
Current mainstream unsupervised video object segmentation(UVOS) approaches typically incorporate optical flow as motion information to locate the primary objects in coherent video frames. However, they fuse appearance...Current mainstream unsupervised video object segmentation(UVOS) approaches typically incorporate optical flow as motion information to locate the primary objects in coherent video frames. However, they fuse appearance and motion information without evaluating the quality of the optical flow. When poor-quality optical flow is used for the interaction with the appearance information, it introduces significant noise and leads to a decline in overall performance. To alleviate this issue, we first employ a quality evaluation module(QEM) to evaluate the optical flow. Then, we select high-quality optical flow as motion cues to fuse with the appearance information, which can prevent poor-quality optical flow from diverting the network's attention. Moreover, we design an appearance-guided fusion module(AGFM) to better integrate appearance and motion information. Extensive experiments on several widely utilized datasets, including DAVIS-16, FBMS-59, and You Tube-Objects, demonstrate that the proposed method outperforms existing methods.展开更多
Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze it...Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion: Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied.展开更多
Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applic...Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.展开更多
In previous papers, the author considered the model of anomalous diffusion, defined by stable random process on an interval with reflecting edges. Estimates of the rate convergence of this process distribution to a un...In previous papers, the author considered the model of anomalous diffusion, defined by stable random process on an interval with reflecting edges. Estimates of the rate convergence of this process distribution to a uniform distribution are constructed. However, recent physical studies require consideration of models of diffusion, defined not only by stable random process with independent increments but multivariate fractional Brownian motion with dependent increments. This task requires the development of special mathematical techniques evaluation of the rate of convergence of the distribution of multivariate Brownian motion in a segment with reflecting boundaries to the limit. In the present work, this technology is developed and a power estimate of the rate of convergence to the limiting uniform distribution is built.展开更多
The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This pap...The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find pre~:ise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.展开更多
In this paper, we propose a restricted, adaptive threshold approach for the segmentation of images of the glottis acquired from high speed video-endoscopy (HSV). The approach involves first, identifying a region of in...In this paper, we propose a restricted, adaptive threshold approach for the segmentation of images of the glottis acquired from high speed video-endoscopy (HSV). The approach involves first, identifying a region of interest (ROI) that encloses the vocal-fold motion extent for each image frame as estimated by the different image sequences. This procedure is then followed by threshold segmentation restricted within the identified ROI for each image frame of the original image sequences, or referred to as sub-image sequences. The threshold value is adapted for each sub-image frame and determined by respective minimum gray-scale value that typically corresponds to a spatial location within the glottis. The proposed approach is practical and highly efficient for segmenting a vast amount of image frames since simple threshold method is adapted. Results obtained from the segmentation of representative clinical image sequences are presented to verify the proposed method.展开更多
Background:The greater trochanter marker is commonly used in 3-dimensional(3D) models;however,its influence on hip and knee kinematics during gait is unclear.Understanding the influence of the greater trochanter marke...Background:The greater trochanter marker is commonly used in 3-dimensional(3D) models;however,its influence on hip and knee kinematics during gait is unclear.Understanding the influence of the greater trochanter marker is important when quantifying frontal and transverse plane hip and knee kinematics,parameters which are particularly relevant to investigate in individuals with conditions such as patellofemoral pain,knee osteoarthritis,anterior cruciate ligament(ACL) injury,and hip pain.The aim of this study was to evaluate the effect of including the greater trochanter in the construction of the thigh segment on hip and knee kinematics during gait.Methods:3D kinematics were collected in 19 healthy subjects during walking using a surface marker system.Hip and knee angles were compared across two thigh segment definitions(with and without greater trochanter) at two time points during stance:peak knee flexion(PKF) and minimum knee flexion(Min KF).Results:Hip and knee angles differed in magnitude and direction in the transverse plane at both time points.In the thigh model with the greater trochanter the hip was more externally rotated than in the thigh model without the greater trochanter(PKF:-9.34°± 5.21° vs.1.40°± 5.22°,Min KF:-5.68°± 4.24° vs.5.01°± 4.86°;p < 0.001).In the thigh model with the greater trochanter,the knee angle was more internally rotated compared to the knee angle calculated using the thigh definition without the greater trochanter(PKF:14.67°± 6.78° vs.4.33°± 4.18°,Min KF:10.54°± 6.71° vs.-0.01°± 2.69°;p < 0.001).Small but significant differences were detected in the sagittal and frontal plane angles at both time points(p < 0.001).Conclusion:Hip and knee kinematics differed across different segment definitions including or excluding the greater trochanter marker,especially in the transverse plane.Therefore when considering whether to include the greater trochanter in the thigh segment model when using a surface markers to calculate 3D kinematics for movement assessment,it is important to have a clear understanding of the effect of different marker sets and segment models in use.展开更多
基金This research work is supported by the Deputyship of Research&Innovation,Ministry of Education in Saudi Arabia(Grant Number 758).
文摘Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes,which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades.Trajectory clustering has become one of the most popular methods in VMS.However,complex data,such as a large number of samples and parameters,makes it difficult for trajectory clustering to work well with accurate motion segmentation results.This study introduces a spatial-angular stacked sparse autoencoder model(SA-SSAE)with l2-regularization and softmax,a powerful deep learning method for visual motion segmentation to cluster similar motion patterns that belong to the same cluster.The proposed model can extract meaningful high-level features using only spatial-angular features obtained from refined tracklets(a.k.a‘trajectories’).We adopt l2-regularization and sparsity regularization,which can learn sparse representations of features,to guarantee the sparsity of the autoencoders.We employ the softmax layer to map the data points into accurate cluster representations.One of the best advantages of the SA-SSAE framework is it can manage VMS even when individuals move around randomly.This framework helps cluster the motion patterns effectively with higher accuracy.We put forward a new dataset with itsmanual ground truth,including 21 crowd videos.Experiments conducted on two crowd benchmarks demonstrate that the proposed model can more accurately group trajectories than the traditional clustering approaches used in previous studies.The proposed SA-SSAE framework achieved a 0.11 improvement in accuracy and a 0.13 improvement in the F-measure compared with the best current method using the CUHK dataset.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572127), the Development Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ43), and the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentation. First the MV field is temporally and spatially normalized, and then accumulated by an iterative backward projection to enhance salient motions and alleviate noisy MVs. The accumulated MV field is then segmented into motion-homogenous regions using a modified statistical region growing approach. Finally, moving object regions are extracted in turn based on minimization of the joint prediction error using the estimated motion models of two region sets containing the candidate object region and other remaining regions, respectively. Experimental results on several H.264 compressed video sequences demonstrate good segmentation performance.
基金grants from the National Natural Science Foundation of China(No.31870620)the Fundamental Research Funds for the Central Universities(No.PTYX202107)the National Technology Extension Fund of Forestry([2019]06)。
文摘Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling.
文摘This paper proposes a motion-based region growing segmentation scheme for the object-based video coding, which segments an image into homogeneous regions characterized by a coherent motion. It adopts a block matching algorithm to estimate motion vectors and uses morphological tools such as open-close by reconstruction and the region-growing version of the watershed algorithm for spatial segmentation to improve the temporal segmentation. In order to determine the reliable motion vectors, this paper also proposes a change detection algorithm and a multi-candidate pro- screening motion estimation method. Preliminary simulation results demonstrate that the proposed scheme is feasible. The main advantage of the scheme is its low computational load.
文摘Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from a statistic camera. Some existing algorithms cannot adapt to changing circumstances and require manual calibration in terms of specification of parameters or some hypotheses for changing background. An adaptive motion segmentation method is developed according to motion variation and chromatic characteristics, which prevents undesired corruption of the background model and does not consider the adaptation coefficient. RGB color space is selected instead of introducing complex color models to segment moving objects and suppress shadows. A color ratio for 4-connected neighbors of a pixel and multi-scale wavelet transformation are combined to suppress shadows. The mentioned approach is scene-independent and high correct segmentation. It has been shown that the approach is robust and efficient to detect moving objects by experiments.
基金Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
文摘A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
文摘In this paper, we present a motion segmentation approach based on the subspace segmentation technique, the genera-lized PCA. By incorporating the cues from the neighborhood of intensity edges of images, motion segmentation is solved under an algebra framework. Our main contribution is to propose a post-processing procedure, which can detect the boundaries of motion layers and further determine the layer ordering. Test results on real imagery have confirmed the validity of our method.
基金supported by the Key Project of National Natural Science Foundation of China (No. 50635030)the National Basic Research Program ("973" Program) of China (No. 2007CB616913)+2 种基金was also supported by the China Scholarship Council (CSC)We also would like to thank Karin Jespers and Sharon Warner of the Structure and Motion Laboratory for their support of the experimental workJRH’s con-tributions were supported by research grants BB/C516844/1 and BB/F01169/1 from the BBSRC, whom we thank.
文摘As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.
基金supported by the National Natural Science Foundation of China (No.61872189)。
文摘Current mainstream unsupervised video object segmentation(UVOS) approaches typically incorporate optical flow as motion information to locate the primary objects in coherent video frames. However, they fuse appearance and motion information without evaluating the quality of the optical flow. When poor-quality optical flow is used for the interaction with the appearance information, it introduces significant noise and leads to a decline in overall performance. To alleviate this issue, we first employ a quality evaluation module(QEM) to evaluate the optical flow. Then, we select high-quality optical flow as motion cues to fuse with the appearance information, which can prevent poor-quality optical flow from diverting the network's attention. Moreover, we design an appearance-guided fusion module(AGFM) to better integrate appearance and motion information. Extensive experiments on several widely utilized datasets, including DAVIS-16, FBMS-59, and You Tube-Objects, demonstrate that the proposed method outperforms existing methods.
文摘Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion: Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied.
基金National Natural Science Foundation of China under Grant Nos.U1434205 and 51678490the Major Research Plan of China National Railway Ministry of China under Grant Nos.2015G002-B and P2018G007the National Key R&D Program of China under Grant No.2017YFC1500803。
文摘Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.
文摘In previous papers, the author considered the model of anomalous diffusion, defined by stable random process on an interval with reflecting edges. Estimates of the rate convergence of this process distribution to a uniform distribution are constructed. However, recent physical studies require consideration of models of diffusion, defined not only by stable random process with independent increments but multivariate fractional Brownian motion with dependent increments. This task requires the development of special mathematical techniques evaluation of the rate of convergence of the distribution of multivariate Brownian motion in a segment with reflecting boundaries to the limit. In the present work, this technology is developed and a power estimate of the rate of convergence to the limiting uniform distribution is built.
文摘The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find pre~:ise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.
文摘In this paper, we propose a restricted, adaptive threshold approach for the segmentation of images of the glottis acquired from high speed video-endoscopy (HSV). The approach involves first, identifying a region of interest (ROI) that encloses the vocal-fold motion extent for each image frame as estimated by the different image sequences. This procedure is then followed by threshold segmentation restricted within the identified ROI for each image frame of the original image sequences, or referred to as sub-image sequences. The threshold value is adapted for each sub-image frame and determined by respective minimum gray-scale value that typically corresponds to a spatial location within the glottis. The proposed approach is practical and highly efficient for segmenting a vast amount of image frames since simple threshold method is adapted. Results obtained from the segmentation of representative clinical image sequences are presented to verify the proposed method.
基金the National Institute of Child Health and Human Development (No.NICHD,No.R15HD059080,and No.R15HD059080-01A1S1)
文摘Background:The greater trochanter marker is commonly used in 3-dimensional(3D) models;however,its influence on hip and knee kinematics during gait is unclear.Understanding the influence of the greater trochanter marker is important when quantifying frontal and transverse plane hip and knee kinematics,parameters which are particularly relevant to investigate in individuals with conditions such as patellofemoral pain,knee osteoarthritis,anterior cruciate ligament(ACL) injury,and hip pain.The aim of this study was to evaluate the effect of including the greater trochanter in the construction of the thigh segment on hip and knee kinematics during gait.Methods:3D kinematics were collected in 19 healthy subjects during walking using a surface marker system.Hip and knee angles were compared across two thigh segment definitions(with and without greater trochanter) at two time points during stance:peak knee flexion(PKF) and minimum knee flexion(Min KF).Results:Hip and knee angles differed in magnitude and direction in the transverse plane at both time points.In the thigh model with the greater trochanter the hip was more externally rotated than in the thigh model without the greater trochanter(PKF:-9.34°± 5.21° vs.1.40°± 5.22°,Min KF:-5.68°± 4.24° vs.5.01°± 4.86°;p < 0.001).In the thigh model with the greater trochanter,the knee angle was more internally rotated compared to the knee angle calculated using the thigh definition without the greater trochanter(PKF:14.67°± 6.78° vs.4.33°± 4.18°,Min KF:10.54°± 6.71° vs.-0.01°± 2.69°;p < 0.001).Small but significant differences were detected in the sagittal and frontal plane angles at both time points(p < 0.001).Conclusion:Hip and knee kinematics differed across different segment definitions including or excluding the greater trochanter marker,especially in the transverse plane.Therefore when considering whether to include the greater trochanter in the thigh segment model when using a surface markers to calculate 3D kinematics for movement assessment,it is important to have a clear understanding of the effect of different marker sets and segment models in use.