The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.展开更多
Due to the characteristics of high resolution and rich texture information,visible light images are widely used for maritime ship detection.However,these images are suscep-tible to sea fog and ships of different sizes...Due to the characteristics of high resolution and rich texture information,visible light images are widely used for maritime ship detection.However,these images are suscep-tible to sea fog and ships of different sizes,which can result in missed detections and false alarms,ultimately resulting in lower detection accuracy.To address these issues,a novel multi-granularity feature enhancement network,MFENet,which includes a three-way dehazing module(3WDM)and a multi-granularity feature enhancement module(MFEM)is proposed.The 3WDM eliminates sea fog interference by using an image clarity automatic classification algorithm based on three-way decisions and FFA-Net to obtain clear image samples.Additionally,the MFEM improves the accuracy of detecting ships of different sizes by utilising an improved super-resolution reconstruction con-volutional neural network to enhance the resolution and semantic representation capa-bility of the feature maps from YOLOv7.Experimental results demonstrate that MFENet surpasses the other 15 competing models in terms of the mean Average Pre-cision metric on two benchmark datasets,achieving 96.28%on the McShips dataset and 97.71%on the SeaShips dataset.展开更多
Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificati...Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy...A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.展开更多
文摘The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.
基金National Key Research and Development Program of China,Grant/Award Number:2022YFB3104700National Natural Science Foundation of China,Grant/Award Numbers:62376198,61906137,62076040,62076182,62163016,62006172+1 种基金The China National Scientific Sea‐floor Observatory,The Natural Science Foundation of Shanghai,Grant/Award Number:22ZR1466700The Jiangxi Provincial Natural Science Fund,Grant/Award Number:20212ACB202001。
文摘Due to the characteristics of high resolution and rich texture information,visible light images are widely used for maritime ship detection.However,these images are suscep-tible to sea fog and ships of different sizes,which can result in missed detections and false alarms,ultimately resulting in lower detection accuracy.To address these issues,a novel multi-granularity feature enhancement network,MFENet,which includes a three-way dehazing module(3WDM)and a multi-granularity feature enhancement module(MFEM)is proposed.The 3WDM eliminates sea fog interference by using an image clarity automatic classification algorithm based on three-way decisions and FFA-Net to obtain clear image samples.Additionally,the MFEM improves the accuracy of detecting ships of different sizes by utilising an improved super-resolution reconstruction con-volutional neural network to enhance the resolution and semantic representation capa-bility of the feature maps from YOLOv7.Experimental results demonstrate that MFENet surpasses the other 15 competing models in terms of the mean Average Pre-cision metric on two benchmark datasets,achieving 96.28%on the McShips dataset and 97.71%on the SeaShips dataset.
文摘Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
文摘A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.