期刊文献+
共找到1,497篇文章
< 1 2 75 >
每页显示 20 50 100
Decentralized Semi-Supervised Learning for Stochastic Configuration Networks Based on the Mean Teacher Method
1
作者 Kaijing Li Wu Ai 《Journal of Computer and Communications》 2024年第4期247-261,共15页
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ... The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments. 展开更多
关键词 Stochastic Neural Network Consistency Regularization semi-supervised learning Decentralized learning
下载PDF
Radar emitter signal recognition method based on improved collaborative semi-supervised learning
2
作者 JIN Tao ZHANG Xindong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1182-1190,共9页
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition... Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition. 展开更多
关键词 emitter signal identification time series BOOTSTRAP semi supervised learning cross entropy function homogeniza-tion dynamic time warping(DTW)
下载PDF
Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation 被引量:1
3
作者 Tian Dongping 《High Technology Letters》 EI CAS 2017年第4期367-374,共8页
In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficie... In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation. 展开更多
关键词 automatic image annotation semi-supervised learning probabilistic latent semantic analysis(PLSA) transductive support vector machine(TSVM) image segmentation image retrieval
下载PDF
Semi-Supervised Learning Based on Manifold in BCI 被引量:1
4
作者 Ji-Ying Zhong Xu Lei De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期22-26,共5页
A Laplacian support vector machine (LapSVM) algorithm, a semi-supervised learning based on manifold, is introduced to brain-computer interface (BCI) to raise the classification precision and reduce the subjects' ... A Laplacian support vector machine (LapSVM) algorithm, a semi-supervised learning based on manifold, is introduced to brain-computer interface (BCI) to raise the classification precision and reduce the subjects' training complexity. The data are collected from three subjects in a three-task mental imagery experiment. LapSVM and transductive SVM (TSVM) are trained with a few labeled samples and a large number of unlabeled samples. The results confirm that LapSVM has a much better classification than TSVM. 展开更多
关键词 Brain-computer interface manifold learning semi-supervised learning support vector machine.
下载PDF
Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning
5
作者 Hong Huang Fulin Luo +1 位作者 Zezhong Ma Hailiang Feng 《Journal of Computer and Communications》 2015年第11期33-39,共7页
In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploit... In this paper, we proposed a new semi-supervised multi-manifold learning method, called semi- supervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturally gives relative importance to the labeled ones through a graph-based methodology. Then it tries to extract discriminative features on each manifold such that the data points in the same manifold become closer. The effectiveness of the proposed multi-manifold learning algorithm is demonstrated and compared through experiments on a real hyperspectral images. 展开更多
关键词 HYPERSPECTRAL IMAGE Classification Dimensionality Reduction Multiple MANIFOLDS Structure SPARSE REPRESENTATION semi-supervised learning
下载PDF
Enhanced vision-transformer integrating with semi-supervised transfer learning for state of health and remaining useful life estimation of lithium-ion batteries
6
作者 Ya-Xiong Wang Shangyu Zhao +2 位作者 Shiquan Wang Kai Ou Jiujun Zhang 《Energy and AI》 EI 2024年第3期380-396,共17页
The state of health(SOH)and remaining useful life(RUL)of lithium-ion batteries are crucial for health management and diagnosis.However,most data-driven estimation methods heavily rely on scarce labeled data,while trad... The state of health(SOH)and remaining useful life(RUL)of lithium-ion batteries are crucial for health management and diagnosis.However,most data-driven estimation methods heavily rely on scarce labeled data,while traditional transfer learning faces challenges in handling domain shifts across various battery types.This paper proposes an enhanced vision-transformer integrating with semi-supervised transfer learning for SOH and RUL estimation of lithium-ion batteries.A depth-wise separable convolutional vision-transformer is developed to extract local aging details with depth-wise convolutions and establishes global dependencies between aging information using multi-head attention.Maximum mean discrepancy is employed to initially reduce the distribution difference between the source and target domains,providing a superior starting point for fine-tuning the target domain model.Subsequently,the abundant aging data of the same type as the target battery are labeled through semi-supervised learning,compensating for the source model's limitations in capturing target battery aging characteristics.Consistency regularization incorporates the cross-entropy between predictions with and without adversarial perturbations into the gradient backpropagation of the overall model.In particular,across the experimental groups 13–15 for different types of batteries,the root mean square error of SOH estimation was less than 0.66%,and the mean relative error of RUL estimation was 3.86%.Leveraging extensive unlabeled aging data,the proposed method could achieve accurate estimation of SOH and RUL. 展开更多
关键词 State of health(S0H) Remaining useful life(RUL) Depth-wise separable convolutional vision-transformer Transfer learning Maximum mean discrepancy semi supervised learning
原文传递
基于Semi-Supervised LLE的人脸表情识别方法 被引量:1
7
作者 冯海亮 黄鸿 +1 位作者 李见为 魏明 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1109-1113,共5页
目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点... 目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果该方法能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的维数约简方法.结论笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能. 展开更多
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别
下载PDF
Subspace Semi-supervised Fisher Discriminant Analysis 被引量:5
8
作者 YANG Wu-Yi LIANG Wei +1 位作者 XIN Le ZHANG Shu-Wu 《自动化学报》 EI CSCD 北大核心 2009年第12期1513-1519,共7页
关键词 费希尔判别分析法 鉴别分析 离散度 降维方法
下载PDF
基于PU learning的信用卡交易安全监管研究
9
作者 陈任峰 朱鸿斌 《网络与信息安全学报》 2023年第3期73-78,共6页
目前信用卡套现手段复杂多变、虚假交易形态层出不穷,在仅有账户级套现标签数据的基础上,信用卡套现管理面临着与客户交互过程难以获取其真实交易情况的业务痛点。为了探究一种精准的信用卡虚假交易监管方法,以商业银行信用卡系统的套... 目前信用卡套现手段复杂多变、虚假交易形态层出不穷,在仅有账户级套现标签数据的基础上,信用卡套现管理面临着与客户交互过程难以获取其真实交易情况的业务痛点。为了探究一种精准的信用卡虚假交易监管方法,以商业银行信用卡系统的套现账户交易标签数据为研究对象,建立了基于PUlearning(positive-unlabeledlearning)的信用卡单笔交易安全识别模型。所提模型在样本数据标注中引入了间谍(Spy)机制,随机抽取高可靠套现交易正样本100万笔及待标注的交易样本130万笔,借助学习器预测结果分布对难以判别的非套现交易负样本进行标注,以获取相对可靠的负样本标签120万笔。基于上述正样本及标注得到的负样本数据,构建了信用卡客户属性信息、额度使用情况及交易偏好特征等120个候选变量,通过变量重要性筛选得到入模变量近50个,利用XGBoost二分类算法进行模型开发预测。结果显示,所提模型对信用卡套现虚假交易的识别准确率为94.20%,群体稳定性指标(PSI)为0.10%,表明基于PUlearning的单笔交易安全识别模型能够实现对信用卡虚假交易的有效监测。该研究改进了机器学习二分类算法在难以获取高精度样本标签数据场景下的模型判别性能,为商业银行信用卡系统交易安全监控提供了新方法。 展开更多
关键词 套现交易数据监测 信用卡系统安全监管 半监督学习 PU learning
下载PDF
基于改进AdvSemiSeg的半监督遥感影像作物制图方法
10
作者 翟雪东 韩文霆 +3 位作者 马伟童 崔欣 李广 黄沈锦 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期196-204,共9页
作物精准遥感制图对于农业资源调查与管理具有重要意义。深度学习为实现精准高效作物制图提供了技术支持。为了缓解深度学习对标记样本的依赖,本文提出了一种改进AdvSemiSeg的半监督遥感影像作物制图方法。所提方法引入STMF-DeepLabv3+... 作物精准遥感制图对于农业资源调查与管理具有重要意义。深度学习为实现精准高效作物制图提供了技术支持。为了缓解深度学习对标记样本的依赖,本文提出了一种改进AdvSemiSeg的半监督遥感影像作物制图方法。所提方法引入STMF-DeepLabv3+作为对抗学习中的生成网络,通过Swin Transformer(ST)和多尺度特征融合(Multi-scale fusion, MF)模块提高生成网络特征编码能力和语义表达能力,改善遥感影像作物分割效果;此外,在判别网络中引入通道注意力(Efficient channel attention, ECA)模块,对不同通道特征图的表征信息进行自适应学习,增强判别网络对不同通道特征的感知能力。模型训练过程中,判别网络为生成网络提供高质量的伪标签和对抗损失,有效提高生成网络的泛化能力。采用所提方法与几种先进的半监督语义分割方法对内蒙古河套灌区遥感影像种植信息进行提取,本文方法性能最优。 展开更多
关键词 遥感 作物制图 半监督学习 生成对抗网络 多尺度特征融合 通道注意力
下载PDF
Labeling Malicious Communication Samples Based on Semi-Supervised Deep Neural Network 被引量:2
11
作者 Guolin Shao Xingshu Chen +1 位作者 Xuemei Zeng Lina Wang 《China Communications》 SCIE CSCD 2019年第11期183-200,共18页
The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has rec... The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios. 展开更多
关键词 sample LABELING MALICIOUS COMMUNICATION semi-supervised learning DEEP neural network LABEL propagation
下载PDF
LOCAL CORRELATION DISCRIMINANT ANALYSIS AND ITS SEMI-SUPERVISED EXTENSION 被引量:1
12
作者 Chen Caikou Shi Jun 《Journal of Electronics(China)》 2011年第3期289-296,共8页
Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main... Considering limitations of Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA), a novel discriminant analysis called Local Correlation Discriminant Analysis (LCDA) is proposed in this paper. The main idea behind LCDA is to use more robust similarity measure, correlation metric, to measure the local similarity between image data. This results in better classifi-cation performance. In addition, to further improve the discriminant power of LCDA, we extend LCDA to semi-supervised case, which can make use of both labeled and unlabeled data to perform dis-criminant analysis. Extensive experimental results on ORL and AR face databases demonstrate that the proposed LCDA and its semi-supervised version are superior to Principal Component Analysis (PCA), LDA, CEA, and MFA. 展开更多
关键词 semi-supervised learning Correlation metric Discriminant analysis Face recognition
下载PDF
A Semi-Supervised WLAN Indoor Localization Method Based on l1-Graph Algorithm 被引量:1
13
作者 Liye Zhang Lin Ma Yubin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期55-61,共7页
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle... For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase. 展开更多
关键词 indoor location estimation l1-graph algorithm semi-supervised learning wireless local area networks(WLAN)
下载PDF
Semi-supervised Document Clustering Based on Latent Dirichlet Allocation (LDA) 被引量:2
14
作者 秦永彬 李解 +1 位作者 黄瑞章 李晶 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期685-688,共4页
To discover personalized document structure with the consideration of user preferences,user preferences were captured by limited amount of instance level constraints and given as interested and uninterested key terms.... To discover personalized document structure with the consideration of user preferences,user preferences were captured by limited amount of instance level constraints and given as interested and uninterested key terms.Develop a semi-supervised document clustering approach based on the latent Dirichlet allocation(LDA)model,namely,pLDA,guided by the user provided key terms.Propose a generalized Polya urn(GPU) model to integrate the user preferences to the document clustering process.A Gibbs sampler was investigated to infer the document collection structure.Experiments on real datasets were taken to explore the performance of pLDA.The results demonstrate that the pLDA approach is effective. 展开更多
关键词 supervised clustering document latent Dirichlet instance captured constraints labeled interested
下载PDF
Global Inference Preserving Projection for Semi-supervised Discriminant Analysis
15
作者 谷小婧 孙韶媛 方建安 《Journal of Donghua University(English Edition)》 EI CAS 2012年第2期144-147,共4页
Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform ... Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform classification task in semi-supervised case. GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples. It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the diseriminant algorithm into a generalized eigenequation problem. Experimental results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 semi-supervised learning dimensionality reduction manifoM structure
下载PDF
基于PU-learning的磷酸激酶预测算法
16
作者 王艺琪 王明举 +3 位作者 张进 彭智才 魏森 谢多双 《北京生物医学工程》 2019年第4期360-368,共9页
目的蛋白质磷酸化是通过激酶催化特定位点把磷酸基转移到底物蛋白质氨基酸残基的过程,是研究蛋白质活力及功能的重要机制。目前已鉴定的数千个磷酸化位点大多缺失激酶信息,为此本研究提出基于PU-learning的磷酸激酶预测算法,通过迭代标... 目的蛋白质磷酸化是通过激酶催化特定位点把磷酸基转移到底物蛋白质氨基酸残基的过程,是研究蛋白质活力及功能的重要机制。目前已鉴定的数千个磷酸化位点大多缺失激酶信息,为此本研究提出基于PU-learning的磷酸激酶预测算法,通过迭代标记磷酸位点,可以准确预测催化磷酸肽的磷酸激酶。方法首先该算法以PU-learning为框架,利用最大熵方差对不同种类的磷酸激酶自动筛选最佳阈值,从而提取每条磷酸肽上潜在的磷酸化位点,然后根据统计分析确定磷酸化位点对应的激酶,最后通过五折交叉验证该算法在Phospho.ELM数据库上的预测性能,并与现有算法对比。结果该算法的交叉验证特异性和灵敏度比现有最好算法在单个数据集上最高提高4%及10%,其预测Phospho.ELM中数据准确度达到79.52%。结论基于PU-learning的磷酸激酶预测算法显著优于现有算法,且可以准确预测Phospho.ELM数据库中未知激酶信息的磷酸肽,在磷酸化实验中具有较强的指导意义。 展开更多
关键词 蛋白质磷酸化 生物信息 半监督学习 PU-learning 磷酸激酶预测
下载PDF
Fusion-Based Deep Learning Model for Hyperspectral Images Classification
17
作者 Kriti Mohd Anul Haq +2 位作者 Urvashi Garg Mohd Abdul Rahim Khan V.Rajinikanth 《Computers, Materials & Continua》 SCIE EI 2022年第7期939-957,共19页
A crucial task in hyperspectral image(HSI)taxonomy is exploring effective methodologies to effusively practice the 3-D and spectral data delivered by the statistics cube.For classification of images,3-D data is adjudg... A crucial task in hyperspectral image(HSI)taxonomy is exploring effective methodologies to effusively practice the 3-D and spectral data delivered by the statistics cube.For classification of images,3-D data is adjudged in the phases of pre-cataloging,an assortment of a sample,classifiers,post-cataloging,and accurateness estimation.Lastly,a viewpoint on imminent examination directions for proceeding 3-D and spectral approaches is untaken.In topical years,sparse representation is acknowledged as a dominant classification tool to effectually labels deviating difficulties and extensively exploited in several imagery dispensation errands.Encouraged by those efficacious solicitations,sparse representation(SR)has likewise been presented to categorize HSI’s and validated virtuous enactment.This research paper offers an overview of the literature on the classification of HSI technology and its applications.This assessment is centered on a methodical review of SR and support vector machine(SVM)grounded HSI taxonomy works and equates numerous approaches for this matter.We form an outline that splits the equivalent mechanisms into spectral aspects of systems,and spectral–spatial feature networks to methodically analyze the contemporary accomplishments in HSI taxonomy.Furthermore,cogitating the datum that accessible training illustrations in the remote distinguishing arena are generally appropriate restricted besides training neural networks(NNs)to necessitate an enormous integer of illustrations,we comprise certain approaches to increase taxonomy enactment,which can deliver certain strategies for imminent learnings on this issue.Lastly,numerous illustrative neural learning-centered taxonomy approaches are piloted on physical HSI’s in our experimentations. 展开更多
关键词 Hyperspectral images feature reduction(FR) support vector machine(SVM) semi supervised learning(SSL) markov random fields(MRFs) composite kernels(CK) semi-supervised neural network(SSNN)
下载PDF
Progressive transductive learning pattern classification via single sphere
18
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
下载PDF
弱监督场景下的支持向量机算法综述 被引量:2
19
作者 丁世飞 孙玉婷 +3 位作者 梁志贞 郭丽丽 张健 徐晓 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期987-1009,共23页
支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量... 支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量的、唯一且明确的真值标记样本来训练学习器,在不完全监督、不确切监督以及多义监督等弱监督场景下难以取得较好的效果.本文首先阐述了弱监督场景的概念和SVM的相关理论,然后从弱监督场景角度出发,系统地梳理了目前SVM算法的研究现状和发展,包括基于半监督学习、多示例学习以及多标记学习的方法;其中基于半监督学习的方法根据数据假设可细分为基于聚类假设和基于流形假设的方法,基于多标记学习的方法根据解决方案可细分为基于示例水平空间、基于包水平空间以及基于嵌入空间的方法,基于多标记学习的方法根据处理思路可细分为基于问题转换和基于算法自适应的方法;随后,本文总结了部分代表性算法在公开数据集上的实验结果;最后,探讨并展望了未来可能的研究方向. 展开更多
关键词 弱监督场景 支持向量机 半监督学习 多示例学习 多标记学习
下载PDF
Cyberspace Security Using Adversarial Learning and Conformal Prediction
20
作者 Harry Wechsler 《Intelligent Information Management》 2015年第4期195-222,共28页
This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactic... This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactical offensive threats. Conformal prediction is the principled and unified adaptive and learning framework used to design, develop, and deploy a multi-faceted?self-managing defensive shield to detect, disrupt, and deny intrusive attacks, hostile and malicious behavior, and subterfuge. Conformal prediction leverages apparent relationships between immunity and intrusion detection using non-conformity measures characteristic of affinity, a typicality, and surprise, to recognize patterns and messages as friend or foe and to respond to them accordingly. The solutions proffered throughout are built around active learning, meta-reasoning, randomness, distributed semantics and stratification, and most important and above all around adaptive Oracles. The motivation for using conformal prediction and its immediate off-spring, those of semi-supervised learning and transduction, comes from them first and foremost supporting discriminative and non-parametric methods characteristic of principled demarcation using cohorts and sensitivity analysis to hedge on the prediction outcomes including negative selection, on one side, and providing credibility and confidence indices that assist meta-reasoning and information fusion. 展开更多
关键词 Active learning Adversarial learning Anomaly DETECTION Change DETECTION CONFORMAL PREDICTION Cyber Security Data Mining DENIAL and Deception Human Factors INSIDER Threats Intrusion DETECTION Meta-Reasoning Moving Target Defense Performance Evaluation Randomness semi-supervised learning Sequence Analysis Statistical learning Transduction
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部