This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in w...This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in which the network can switch between a direct transmission mode and a Single-Relay-Selection-based Cooperative Transmission(SRS-CT)mode that employs dynamic decode-and-forward relaying accomplished with Rateless Codes(RCs).Then,under this protocol,an optimization problem is formulated to jointly optimize the network operation mode and the resource allocation in the SRS-CT mode.The formulated problem is difficult to solve because not only does the noncausal Channel State Information(CSI)cause the problem to be stochastic,but also the energy state evolution at each relay is complicated by network operation mode decision and resource allocation.Assuming that noncausal CSI is available,the stochastic optimization issue is first to be addressed by solving an involved deterministic optimization problem via dynamic programming,where the complicated energy state evolution issue is addressed by a layered optimization method.Then,based on a finite-state Markov channel model and assuming that CSI statistical properties are known,the stochastic optimization problem is solved by extending the result derived for the noncausal CSI case to the causal CSI case.Finally,a myopic strategy is proposed to achieve a tradeoff between complexity and performance without the knowledge of CSI statistical properties.The simulation results verify that our proposed SRS-and-RC-based design can achieve a maximum of approximately 40%throughput gain over a simple SRS-and-RC-based baseline scheme in SWIPT-based multi-relay networks.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks o...In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.展开更多
With the rapid development of the Internet technology,millimeter wave(mmWave)will be used as a supplement to 5G low frequency bands to meet the extremely high system capacity requirements of 5G in hot spots.Although 5...With the rapid development of the Internet technology,millimeter wave(mmWave)will be used as a supplement to 5G low frequency bands to meet the extremely high system capacity requirements of 5G in hot spots.Although 5G mmWave communication can adapt to the needs of 5G network and carry a large amount of transmitted data,transmission stability has become one of the key technical issues of 5G network mmWave communication due to problems such as strong attenuation and poor penetration of mmWave.In order to improve the efficiency of the mmWave multi-hop transmission,we propose a 5G mmWave multi-hop transmission method based on network coding,which can adapt to the current wireless network environment,improve spectrum efficiency and increase network throughput.Based on MATLAB simulation experiments,it is verified that the proposed method can greatly improve the transmission efficiency and reduce the signal loss under the premise of ensuring the accurate signal transmission.展开更多
In this paper, we consider a three-hop relay system based on interference cancellation technique in Underlay cognitive radio (CR) network. Although underlay CR has been shown as a promising technique to better utilize...In this paper, we consider a three-hop relay system based on interference cancellation technique in Underlay cognitive radio (CR) network. Although underlay CR has been shown as a promising technique to better utilize the source of primary users (PUs), its secondary performance will be severely degraded. On one hand, by adapting the Underlay spectrum sharing pattern, secondary users (SUs) would observe the strict power constraints and be interfered by primary users. On the other hand, limited transmit power results in limited transmission range, which greatly degrade the secondary transmission capacity. To solve the problems above, we propose an interference cancellation protocol for multi-hop wireless communication networks in underlay CR, which could develop the long-distance transmission performance and improve the transmission efficiency significantly. As simulation results shows, proposed scheme significantly reduce the secondary outage probability and increase the secondary diversity than the traditional cases.展开更多
To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTR...To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.展开更多
In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided ...In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided cellular networks. Moreover, systematic performance analysis and extensive simulations are performed for the proposed NC2R and traditional relaying and non-relaying schemes. The results show that NCR outperforms conventional relaying and non-relaying schemes in terms of blocking probability and spectral efficiency, especially for cell-edge users. Additionally, the location selections for relays with NCR are also discussed. These results will provide some insights for incorporating network coding into next-generation broadband cellular relay mobile systems.展开更多
In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify ...In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify the efficiency of the proposed structure by solving the associate field distribution.The application of optimal single-relay selection method shows that full diversity gain with low complexity can be achieved.In this paper,the proposed technique using smart relays combines the aforementioned two methods to attain the benefits of both methods by achieving the highest coding and diversity gain and enhances the overall network performance in terms of bit error rate(BER).Moreover,we analytically prove the advantage of using the proposed technique.In our simulations,it can be shown that the proposed technique outperforms the best known state-of-the-art single relay selection technique.Furthermore,the BER expressions obtained from the theoretical analysis are perfectly matched to those obtained from the conducted simulations.展开更多
In order to provide privacy provisioning for the secondary information,we propose an energy harvesting based secure transmission scheme for the cognitive multi-relay networks.In the proposed scheme,two secondary relay...In order to provide privacy provisioning for the secondary information,we propose an energy harvesting based secure transmission scheme for the cognitive multi-relay networks.In the proposed scheme,two secondary relays harvest energy to power the secondary transmitter and assist the secondary secure transmission without interfere the secondary transmission.Specifically,the proposed secure transmission policy is implemented into two phases.In the first phase,the secondary transmitter transmits the secrecy information and jamming signal through the power split method.After harvesting energy from a fraction of received radio-frequency signals,one secondary relay adopts the amplify-and-forward relay protocol to assist the secondary secure transmission and the other secondary relay just forwards the new designed jamming signal to protect the secondary privacy information and degrade the jamming interference at the secondary receiver.For the proposed scheme,we first analyze the average secrecy rate,the secondary secrecy outage probability,and the ergodic secrecy rate,and derive their closed-form expressions.Following the above results,we optimally allocate the transmission power such that the secrecy rate is maximized under the secrecy outage probability constraint.For the optimization problem,an AI based simulated annealing algorithm is proposed to allocate the transmit power.Numerical results are presented to validate the performance analytical results and show the performance superiority of the proposed scheme in terms of the average secrecy rate.展开更多
This study investigates physical layer security in downlink multipleinput multiple-output(MIMO) multi-hop heterogeneous cellular networks(MHCNs),in which communication between mobile users and base stations(BSs) is es...This study investigates physical layer security in downlink multipleinput multiple-output(MIMO) multi-hop heterogeneous cellular networks(MHCNs),in which communication between mobile users and base stations(BSs) is established by a single or multiple hops,to address the problem of insufficient security performance of MIMO heterogeneous cellular networks.First,two-dimensional homogeneous Poisson point processes(HPPPs) are utilized to model the locations of K-tier BSs in MIMO MHCNs and receivers,including those of legitimate users and eavesdroppers.Second,based on the channel gain distribution and the statistics property of HPPP,the achievable ergodic rates of the main and eavesdropper channels in direct and ad hoc links are derived,respectively.Third,the secrecy coverage probability and the achievable ergodic secrecy throughput of downlink MIMO MHCNs are explored,and their expressions are derived.Lastly,the correctness of the theoretical derivation is verified through Monte Carlo simulations.展开更多
The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) s...The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.展开更多
In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit po...This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.展开更多
In this paper, the outage perfor- mance of a cognitive relaying network over Nakagami-m fading channels, employing simultaneous wireless information and power transfer (SWIPT) technology is analyzed and evaluated. T...In this paper, the outage perfor- mance of a cognitive relaying network over Nakagami-m fading channels, employing simultaneous wireless information and power transfer (SWIPT) technology is analyzed and evaluated. The operation of this network is considered in conjunction with the convention- al decode-and-forward (DF) and incremental DF (IDF) protocols. For the conventional DF protocol, it is assumed that there is no direct link between the secondary transmitter (S) and the secondary destination (D), while (for both protocols) after harvesting energy, the relay node (R) always helps to forward the resulting signal to D. However, for the IDF protocol, R assists in relaying S's information to D only when the direct communication between S and D has failed. Furthermore, for both DF and IDF protocols, we assume there is no power supply for R, and R harvests energy from the transmitted signal of S. We derive exact ana- lytical expressions for the outage probability at D in DF and IDF protocols, respectively, in terms of the bivariate Meijer's G-function. Performance evaluation results obtained by means of Monte-Carlo simulations are also provided and have validated the correctness of the oroDosed analysis.展开更多
In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes ...In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.展开更多
In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for...In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.展开更多
The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secu...The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.展开更多
In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC)...In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC) schemes are proposed. When the condition of all direct channels is worse, JNFC scheme based on distributed LT(DLT) codes is used. Otherwise, JNFC scheme based on multi-dimensional LT(MD-LT) codes is suited. For both two above-mentioned schemes, the united degree distribution design method for short-length fountain codes is proposed. For the latter scheme, MD-LT codes are proposed for equal error protection(EEP) of each user. Simulation results and analysis show that the united degree distribution need less decoding overhead compared with other degree distribution for short-length fountain codes. And then, all users are protected equally in despite of asymmetric uplinks.展开更多
Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless...Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61872098 and Grant 61902084the Natural Science Foundation of Guangdong Province under Grant 2017A030313363.
文摘This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in which the network can switch between a direct transmission mode and a Single-Relay-Selection-based Cooperative Transmission(SRS-CT)mode that employs dynamic decode-and-forward relaying accomplished with Rateless Codes(RCs).Then,under this protocol,an optimization problem is formulated to jointly optimize the network operation mode and the resource allocation in the SRS-CT mode.The formulated problem is difficult to solve because not only does the noncausal Channel State Information(CSI)cause the problem to be stochastic,but also the energy state evolution at each relay is complicated by network operation mode decision and resource allocation.Assuming that noncausal CSI is available,the stochastic optimization issue is first to be addressed by solving an involved deterministic optimization problem via dynamic programming,where the complicated energy state evolution issue is addressed by a layered optimization method.Then,based on a finite-state Markov channel model and assuming that CSI statistical properties are known,the stochastic optimization problem is solved by extending the result derived for the noncausal CSI case to the causal CSI case.Finally,a myopic strategy is proposed to achieve a tradeoff between complexity and performance without the knowledge of CSI statistical properties.The simulation results verify that our proposed SRS-and-RC-based design can achieve a maximum of approximately 40%throughput gain over a simple SRS-and-RC-based baseline scheme in SWIPT-based multi-relay networks.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
文摘In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.
基金National Natural Science Foundation of China(No.61871339,61731012,61971365)Key Laboratory of Digital Fujian on IoT Communication,Architecture and Security Technology(No.2010499)+1 种基金National Ministry of Science and Technology,863 Project(No.2015AA01A705)Industry-University Cooperation Project of Department of Science and Technology of Fujian Province(No.2020H6001).
文摘With the rapid development of the Internet technology,millimeter wave(mmWave)will be used as a supplement to 5G low frequency bands to meet the extremely high system capacity requirements of 5G in hot spots.Although 5G mmWave communication can adapt to the needs of 5G network and carry a large amount of transmitted data,transmission stability has become one of the key technical issues of 5G network mmWave communication due to problems such as strong attenuation and poor penetration of mmWave.In order to improve the efficiency of the mmWave multi-hop transmission,we propose a 5G mmWave multi-hop transmission method based on network coding,which can adapt to the current wireless network environment,improve spectrum efficiency and increase network throughput.Based on MATLAB simulation experiments,it is verified that the proposed method can greatly improve the transmission efficiency and reduce the signal loss under the premise of ensuring the accurate signal transmission.
基金This work is supported by Sichuan science and Technology Program(2019YFG0212)China Postdoctoral Science Foundation(2019M653401)Sichuan Science and Technology Program(2018GZ0184).
文摘In this paper, we consider a three-hop relay system based on interference cancellation technique in Underlay cognitive radio (CR) network. Although underlay CR has been shown as a promising technique to better utilize the source of primary users (PUs), its secondary performance will be severely degraded. On one hand, by adapting the Underlay spectrum sharing pattern, secondary users (SUs) would observe the strict power constraints and be interfered by primary users. On the other hand, limited transmit power results in limited transmission range, which greatly degrade the secondary transmission capacity. To solve the problems above, we propose an interference cancellation protocol for multi-hop wireless communication networks in underlay CR, which could develop the long-distance transmission performance and improve the transmission efficiency significantly. As simulation results shows, proposed scheme significantly reduce the secondary outage probability and increase the secondary diversity than the traditional cases.
基金supported in part by the National Natural Science Foundation of China under Grant No.61871032in part by Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101in part by the Open Research Fund of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology) under Grant CRKL190204
文摘To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.
基金supported by the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University under Grant No.RCS2012ZT008the National Key Basic Research Program of China(973Program)under Grant No.2012CB316100(2)+1 种基金the National Natural Science Foundation of China under Grants No.61201203,No.61171064the Fundamental Research Funds for the Central Universities under Grant No.2012JBM030
文摘In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided cellular networks. Moreover, systematic performance analysis and extensive simulations are performed for the proposed NC2R and traditional relaying and non-relaying schemes. The results show that NCR outperforms conventional relaying and non-relaying schemes in terms of blocking probability and spectral efficiency, especially for cell-edge users. Additionally, the location selections for relays with NCR are also discussed. These results will provide some insights for incorporating network coding into next-generation broadband cellular relay mobile systems.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify the efficiency of the proposed structure by solving the associate field distribution.The application of optimal single-relay selection method shows that full diversity gain with low complexity can be achieved.In this paper,the proposed technique using smart relays combines the aforementioned two methods to attain the benefits of both methods by achieving the highest coding and diversity gain and enhances the overall network performance in terms of bit error rate(BER).Moreover,we analytically prove the advantage of using the proposed technique.In our simulations,it can be shown that the proposed technique outperforms the best known state-of-the-art single relay selection technique.Furthermore,the BER expressions obtained from the theoretical analysis are perfectly matched to those obtained from the conducted simulations.
基金supported in part by the National Natural Science Foundation of China under Grant 61901379in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2019JQ-253+1 种基金in part by the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2020D04in part by the Fundamental Research Funds for the Central Universities (No. 31020180QD095, 3102018QD096, and G2018QY0308)
文摘In order to provide privacy provisioning for the secondary information,we propose an energy harvesting based secure transmission scheme for the cognitive multi-relay networks.In the proposed scheme,two secondary relays harvest energy to power the secondary transmitter and assist the secondary secure transmission without interfere the secondary transmission.Specifically,the proposed secure transmission policy is implemented into two phases.In the first phase,the secondary transmitter transmits the secrecy information and jamming signal through the power split method.After harvesting energy from a fraction of received radio-frequency signals,one secondary relay adopts the amplify-and-forward relay protocol to assist the secondary secure transmission and the other secondary relay just forwards the new designed jamming signal to protect the secondary privacy information and degrade the jamming interference at the secondary receiver.For the proposed scheme,we first analyze the average secrecy rate,the secondary secrecy outage probability,and the ergodic secrecy rate,and derive their closed-form expressions.Following the above results,we optimally allocate the transmission power such that the secrecy rate is maximized under the secrecy outage probability constraint.For the optimization problem,an AI based simulated annealing algorithm is proposed to allocate the transmit power.Numerical results are presented to validate the performance analytical results and show the performance superiority of the proposed scheme in terms of the average secrecy rate.
基金supported in part by National High-tech R&D Program(863 Program) under Grant No.2014AA01A701National Natural Science Foundation of China under Grant No.61379006,61401510,61521003Project funded by China Postdoctoral Science Foundation under Grant No.2016M592990
文摘This study investigates physical layer security in downlink multipleinput multiple-output(MIMO) multi-hop heterogeneous cellular networks(MHCNs),in which communication between mobile users and base stations(BSs) is established by a single or multiple hops,to address the problem of insufficient security performance of MIMO heterogeneous cellular networks.First,two-dimensional homogeneous Poisson point processes(HPPPs) are utilized to model the locations of K-tier BSs in MIMO MHCNs and receivers,including those of legitimate users and eavesdroppers.Second,based on the channel gain distribution and the statistics property of HPPP,the achievable ergodic rates of the main and eavesdropper channels in direct and ad hoc links are derived,respectively.Third,the secrecy coverage probability and the achievable ergodic secrecy throughput of downlink MIMO MHCNs are explored,and their expressions are derived.Lastly,the correctness of the theoretical derivation is verified through Monte Carlo simulations.
基金supported by the National High Technology Research and Development Program of P.R.China under Grant No.2012 AA121604 the National Natural Science Foundation of China under Grants No.60902042,No.61170014,No.61202079+1 种基金 the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20090006110014 the Foundation for Key Program of Ministry of Education of China under Grant No.311007
文摘The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
基金National Natural Science Foundation of China(No.61461024)
文摘This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.
基金supported in part by the National Natural Science Foundation of China(Grant No.61472343)China Postdoctoral Science Foundation(Grant No.2014M56074)
文摘In this paper, the outage perfor- mance of a cognitive relaying network over Nakagami-m fading channels, employing simultaneous wireless information and power transfer (SWIPT) technology is analyzed and evaluated. The operation of this network is considered in conjunction with the convention- al decode-and-forward (DF) and incremental DF (IDF) protocols. For the conventional DF protocol, it is assumed that there is no direct link between the secondary transmitter (S) and the secondary destination (D), while (for both protocols) after harvesting energy, the relay node (R) always helps to forward the resulting signal to D. However, for the IDF protocol, R assists in relaying S's information to D only when the direct communication between S and D has failed. Furthermore, for both DF and IDF protocols, we assume there is no power supply for R, and R harvests energy from the transmitted signal of S. We derive exact ana- lytical expressions for the outage probability at D in DF and IDF protocols, respectively, in terms of the bivariate Meijer's G-function. Performance evaluation results obtained by means of Monte-Carlo simulations are also provided and have validated the correctness of the oroDosed analysis.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.
基金supported in part by the State Major Science and Technology Special Projects under Grant No. 2012ZX03004001the National Basic Research Program (973) of China under Grants No. 2012CB315801, No. 2011CB302901the Chinese Universities Scientific Fund under Grant No. 2012RC0306
文摘In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.
基金supported by National Key Research and Development Program of Chain(No.2021YFE0205300)National Natural Science Foundation of China(No.62171313).
文摘The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.
基金supported in part by a grant from the Ph.D. Programs Foundation of Ministry of Education of China under Grants No. 20094307110004National Natural Science Foundation of China under Grants No.61372098, No.61101074Natural Science Foundation of Hunan Province, China under Grants No.12jj2037
文摘In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC) schemes are proposed. When the condition of all direct channels is worse, JNFC scheme based on distributed LT(DLT) codes is used. Otherwise, JNFC scheme based on multi-dimensional LT(MD-LT) codes is suited. For both two above-mentioned schemes, the united degree distribution design method for short-length fountain codes is proposed. For the latter scheme, MD-LT codes are proposed for equal error protection(EEP) of each user. Simulation results and analysis show that the united degree distribution need less decoding overhead compared with other degree distribution for short-length fountain codes. And then, all users are protected equally in despite of asymmetric uplinks.
基金Supported by the National Natural Science Foundation of China (No. 60903156), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2010ZX03004-001-02).
文摘Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.