Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics,random disturbances and load variations.To account for uncertain disturbances in the operation of manipulators,we ...Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics,random disturbances and load variations.To account for uncertain disturbances in the operation of manipulators,we propose an adaptive manipulator control method based on a multi-joint fuzzy system,in which the upper bound information of the fuzzy system is constant and the state variables of the manipulator control system are measurable.The control algorithm of the system is a MIMO(multi-input-multi-output)fuzzy system that can approximate system error by using a robust adaptive control law to eliminate the shadow caused by approximation error.It can ensure the stability of complex manipulator control systems and reduce the number of fuzzy rules required.Comparison of experimental and simulation data shows that the controller designed using this algorithm has highly-precise trajectory-tracking control and can control robotic systems with complex characteristics of non-linearity,coupling and uncertainty.Therefore,the proposed algorithm has good practical application prospects and promotes the development of complex control systems.展开更多
Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors an...Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.展开更多
基金the project of science and technology of Henan province under Grant No.14210221036.
文摘Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics,random disturbances and load variations.To account for uncertain disturbances in the operation of manipulators,we propose an adaptive manipulator control method based on a multi-joint fuzzy system,in which the upper bound information of the fuzzy system is constant and the state variables of the manipulator control system are measurable.The control algorithm of the system is a MIMO(multi-input-multi-output)fuzzy system that can approximate system error by using a robust adaptive control law to eliminate the shadow caused by approximation error.It can ensure the stability of complex manipulator control systems and reduce the number of fuzzy rules required.Comparison of experimental and simulation data shows that the controller designed using this algorithm has highly-precise trajectory-tracking control and can control robotic systems with complex characteristics of non-linearity,coupling and uncertainty.Therefore,the proposed algorithm has good practical application prospects and promotes the development of complex control systems.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50105002) and Fund of Harbin Institute of Technology (Grant No.HIT.2001.14).
文摘Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.