期刊文献+
共找到821篇文章
< 1 2 42 >
每页显示 20 50 100
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
1
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
Multi-layer network embedding on scc-based network with motif
2
作者 Lu Sun Xiaona Li +4 位作者 Mingyue Zhang Liangtian Wan Yun Lin Xianpeng Wang Gang Xu 《Digital Communications and Networks》 SCIE CSCD 2024年第3期546-556,共11页
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent... Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network. 展开更多
关键词 Semantic communication and computing multi-layer network Graph neural network MOTIF
下载PDF
Target Controllability of Multi-Layer Networks With High-Dimensional Nodes
3
作者 Lifu Wang Zhaofei Li +1 位作者 Ge Guo Zhi Kong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1999-2010,共12页
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte... This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion. 展开更多
关键词 High-dimensional nodes inter-layer couplings multi-layer networks target controllability
下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
4
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 Graph neural network Dynamic interwell connectivity Production-injection splitting Attention mechanism multi-layer reservoir
下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
5
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
下载PDF
Calibration Method Based on RBF Neural Networks for Soil Moisture Content Sensor 被引量:9
6
作者 杨敬锋 李亭 +1 位作者 卢启福 陈志民 《Agricultural Science & Technology》 CAS 2010年第2期140-142,共3页
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso... Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective... 展开更多
关键词 calibration Model Soil Moisture Sensor Wireless Sensor networks RBF Neural networks
下载PDF
Multi-layer Tectonic Model for Intraplate Deformation and Plastic-Flow Network in the Asian Continental Lithosphere 被引量:4
7
作者 Wang Shengzu Institute of Geology, State Seismological Bureau, Beijing Liu Linqun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1993年第3期247-271,共25页
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c... In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation. 展开更多
关键词 Continental lithosphere tectonic deformation multi-layer tectonic model large-scale seismic belt seismic network plastic flow network
下载PDF
Laplacian energy maximizationfor multi-layer air transportation networks 被引量:2
8
作者 Zheng Yue Li Wenquan +1 位作者 Qiu Feng Cao Xi 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期341-347,共7页
To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effect... To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales. 展开更多
关键词 air TRANSPORTATION network LAPLACIAN ENERGY ROBUSTNESS multi-layer networkS
下载PDF
Distributed Contact Plan Design for Multi-Layer Satellite-Terrestrial Network 被引量:3
9
作者 Wenfeng Shi Deyun Gao +4 位作者 Huachun Zhou Bohao Feng Haifeng Li Guanwen Li Wei Quan 《China Communications》 SCIE CSCD 2018年第1期23-34,共12页
In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to co... In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay. 展开更多
关键词 CONTACT GRAPH ROUTING distributedcontact PLAN multi-layered SATELLITE network inter-layer CONTACT selection
下载PDF
Simultaneous spectrophotometric determination of four preservatives in foodstuffs by multivariate calibration and artificial neural networks 被引量:1
10
作者 Yan Qing Chen Yong Nian Ni 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第5期615-619,共5页
Benzoic acid (BA), methylparaben (MP), propylparaben (PP) and sorbic acid (SA) are food preservatives, and they have well defined UV spectra. However, their spectra overlap seriously, and it is difficult to de... Benzoic acid (BA), methylparaben (MP), propylparaben (PP) and sorbic acid (SA) are food preservatives, and they have well defined UV spectra. However, their spectra overlap seriously, and it is difficult to determine them individually from their mixtures without preseparation. In this paper, seven different chemometric approaches were applied to resolve the overlapping spectra and to determine these compounds simultaneously. With respect to the criteria of % relative prediction error (RPE) and % recovery, principal component regression (PCR) and radial basis function-artificial neural network (RBF-ANN) were the preferred methods. These two methods were successfully applied to the analysis of some commercial samples. 展开更多
关键词 SPECTROPHOTOMETRY PRESERVATIVES Multivariate calibration Artificial neural networks
下载PDF
Site selection and data processing of GNSS receiver calibration networks based on TEQC and GAMIT 被引量:2
11
作者 ZHOU Changjie MAO Jiuchang +1 位作者 WANG Hongyao WU Qiong 《Global Geology》 2019年第2期121-127,共7页
This study introduces the site selection and data processing of GNSS receiver calibration networks. According to the design requirements and relevant specifications, the authors investigate the observation conditions ... This study introduces the site selection and data processing of GNSS receiver calibration networks. According to the design requirements and relevant specifications, the authors investigate the observation conditions of the potential sites and collect the experimental GNSS observation data. TEQC is used to evaluate the data availability rate and multipath effects of the observation data to determine the appropriate site. After the construction and measurement of the calibration network, the baseline processing of the medium and long baseline network is conducted by GAMIT. The accuracy indexes including NRMS, difference between repeated baselines, and closure of independent observation loops all meet the specified criteria. 展开更多
关键词 GNSS calibration network TEQC data quality CHECK GAMIT
下载PDF
Software-Defined Space-Air-Ground Integrated Network Architecture with the Multi-Layer Satellite Backbone Network 被引量:1
12
作者 Chao Guo Cheng Gong +3 位作者 Juan Guo Zhanzhen Wei Yanyan Han Sher Zaman Khan 《Computers, Materials & Continua》 SCIE EI 2020年第7期527-540,共14页
Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space in... Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground. 展开更多
关键词 Space-Air-Ground integrated network network architecture software-defined network multi-layer satellite backbone network
下载PDF
Efficient Training of Multi-Layer Neural Networks to Achieve Faster Validation 被引量:1
13
作者 Adel Saad Assiri 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期435-450,共16页
Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but... Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but not limited to physics,biology,chemistry,and engineering.However,ANNs lack several key characteristics of biological neural networks,such as sparsity,scale-freeness,and small-worldness.The concept of sparse and scale-free neural networks has been introduced to fill this gap.Network sparsity is implemented by removing weak weights between neurons during the learning process and replacing them with random weights.When the network is initialized,the neural network is fully connected,which means the number of weights is four times the number of neurons.In this study,considering that a biological neural network has some degree of initial sparsity,we design an ANN with a prescribed level of initial sparsity.The neural network is tested on handwritten digits,Arabic characters,CIFAR-10,and Reuters newswire topics.Simulations show that it is possible to reduce the number of weights by up to 50%without losing prediction accuracy.Moreover,in both cases,the testing time is dramatically reduced compared with fully connected ANNs. 展开更多
关键词 SPARSITY weak weights multi-layer neural network NN training with initial sparsity
下载PDF
Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network
14
作者 解维浩 周斌 +2 位作者 刘恩晓 卢为党 周婷 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期603-610,共8页
Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Un... Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue(HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue(HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. 展开更多
关键词 multi-layer complex network SCALE-FREE routing strategy network capacity
下载PDF
Explosive synchronization of multi-layer complex networks based on star connection between layers with delay
15
作者 金彦亮 韩钱源 +2 位作者 郭润珠 高塬 沈礼权 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期343-349,共7页
Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most re... Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most research on complex networks with delay has focused on single-layer or double-layer networks,multi-layer networks are seldom explored.In this paper,we propose a Kuramoto model of frequency weights in multi-layer complex networks with delay and star connections between layers.Through theoretical analysis and numerical verification,the factors affecting the backward critical coupling strength are analyzed.The results show that the interaction between layers and the average node degree has a direct effect on the backward critical coupling strength of each layer network.The location of the delay,the size of the delay,the number of network layers,the number of nodes,and the network topology are revealed to have no direct impact on the backward critical coupling strength of the network.Delay is introduced to explore the influence of delay and other related parameters on ES. 展开更多
关键词 multi-layer networks Kuramoto model explosive synchronization DELAY
下载PDF
Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
16
作者 Yan-Liang Jin Run-Zhu Guo +1 位作者 Xiao-Qi Yu Li-Quan Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期264-270,共7页
Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer... Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer network,but few in multi-layer networks.This paper proposes a frequency-weighted Kuramoto model in multi-layer complex networks with star connection between layers and analyzes the factors affecting the backward critical coupling strength by both theoretical analysis and numerical validation.Our results show that the backward critical coupling strength of each layer network is influenced by the inter-layer interaction strength and the average degree.The number of network layers,the number of nodes,and the network topology can not directly affect the synchronization of the network.Enhancing the inter-layer interaction strength can prevent the emergence of explosive synchronization and increasing the average degree can promote the generation of explosive synchronization. 展开更多
关键词 explosive synchronization Kuramoto model multi-layer networks
下载PDF
Prediction of Uncertainty Estimation and Confidence Calibration Using Fully Convolutional Neural Network
17
作者 Karim Gasmi Lassaad Ben Ammar +1 位作者 Hmoud Elshammari Fadwa Yahya 《Computers, Materials & Continua》 SCIE EI 2023年第5期2557-2573,共17页
Convolution neural networks(CNNs)have proven to be effective clinical imagingmethods.This study highlighted some of the key issues within these systems.It is difficult to train these systems in a limited clinical imag... Convolution neural networks(CNNs)have proven to be effective clinical imagingmethods.This study highlighted some of the key issues within these systems.It is difficult to train these systems in a limited clinical image databases,and many publications present strategies including such learning algorithm.Furthermore,these patterns are known formaking a highly reliable prognosis.In addition,normalization of volume and losses of dice have been used effectively to accelerate and stabilize the training.Furthermore,these systems are improperly regulated,resulting in more confident ratings for correct and incorrect classification,which are inaccurate and difficult to understand.This study examines the risk assessment of Fully Convolutional Neural Networks(FCNNs)for clinical image segmentation.Essential contributions have been made to this planned work:1)dice loss and cross-entropy loss are compared on the basis of segment quality and uncertain assessment of FCNNs;2)proposal for a group model for assurance measurement of full convolutional neural networks trained with dice loss and group normalization;And 3)the ability of the measured FCNs to evaluate the segment quality of the structures and to identify test examples outside the distribution.To evaluate the study’s contributions,it conducted a series of tests in three clinical image division applications such as heart,brain and prostate.The findings of the study provide significant insights into the predictive ambiguity assessment and a practical strategies for outside-distribution identification and reliable measurement in the clinical image segmentation.The approaches presented in this research significantly enhance the reliability and accuracy rating of CNNbased clinical imaging methods. 展开更多
关键词 Medical image SEGMENTATION confidence calibration uncertainty estimation fully convolutional neural network
下载PDF
Calibration Method of Magnetometer Based on BP Neural Network
18
作者 Yanke Wang Tao Sheng +1 位作者 Liang He Zhaoyang Cheng 《Journal of Computer and Communications》 2020年第6期31-41,共11页
<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of p... <div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div> 展开更多
关键词 Magnetometer calibration Neural network Levenberg-Marquardt Method On-Orbit Training
下载PDF
Hausdorff Dimension of Multi-Layer Neural Networks
19
作者 Jung-Chao Ban Chih-Hung Chang 《Advances in Pure Mathematics》 2013年第9期9-14,共6页
This elucidation investigates the Hausdorff dimension of the output space of multi-layer neural networks. When the factor map from the covering space of the output space to the output space has a synchronizing word, t... This elucidation investigates the Hausdorff dimension of the output space of multi-layer neural networks. When the factor map from the covering space of the output space to the output space has a synchronizing word, the Hausdorff dimension of the output space relates to its topological entropy. This clarifies the geometrical structure of the output space in more details. 展开更多
关键词 multi-layer Neural networks HAUSDORFF DIMENSION Sofic SHIFT OUTPUT Space
下载PDF
Learning Performance of Linear and Exponential Activity Function with Multi-layered Neural Networks
20
作者 Betere Job Isaac Hiroshi Kinjo +1 位作者 Kunihiko Nakazono Naoki Oshiro 《Journal of Electrical Engineering》 2018年第5期289-294,共6页
This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,f... This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning. 展开更多
关键词 multi-layer NEURAL networks LEARNING performance multi logic training patterns ACTIVITY FUNCTION BP NEURAL network deep LEARNING
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部