The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste...The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.展开更多
The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional tec...The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional technology process and orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factor's levels for the dielectric properties of BST ceramics were obtained. The optimum formula for maximum dielectric constant (ε) and for minimum dielectric loss (tanδ) was obtained under the experimental conditions. The BST ceramics with optimum comprehensive properties was obtained by means of orthogonal design experiments, with the sintering temperature at 1200 ℃, the dielectric constant 5239, the dielectric loss 0.0097, withstand electric voltage over 6 MV·m^-1, capacitance temperature changing ence of various components on the providing the basis for preparation rate (△C/C) - 75.67%, and suited for Y5V character. The mechanism of the infludielectric properties of medium temperature sintering BST ceramics was studied, thus of multilayer capacitor ceramics and single-chip capacitor ceramics.展开更多
With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh enviro...With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh environmental conditions.Relaxor ferroelectrics with diffuse phase transition feature are potential dielectrics for the construction of UWT MLCCs.However,how to ensure high dielectric constant together with low dielectric loss in the wide temperature region is still a big challenge.Here,the above difficulties are addressed by tailoring the combination types of polar nanoregions(PNRs)in the(1-x)(0.8Na_(0.5)Bi_(0.5)TiO_(3)-0.2K_(0.5)Bi_(0.5)TiO_(3))-xNaTaO3(NBT-KBT-xNT)system.Compared with PNRS types of P4bm+R3c and P4bm+Pbnm,the combination type of P4bm+Pbnm+R3c PNRs in NBT-KBT-0.31NT is the most beneficial to obtain comprehensive excellent dielectric performance because it can balance the relationship between high dielectric constant and temperature stability over a wide temperature region.Further,by optimizing the laminating pressure and co-firing temperature to realize a tight interfacial structure between the dielectric layer and the Pt inner electrode,a record-high dielectric constant(er=(907%±15%))together with low dielectric loss(tan δ≤0.025)is achieved over an ultra-wide range from-61℃ to 306℃ for NBT-KBT-0.31 NT MLCC,demonstrating that tailoring the combination types of PNRs is a powerful strategy in designing UWT MLCC dielectrics.展开更多
The effect of Sm 2O 3 dopant on the sintering characteristics and dielectric properties of barium zirconium titanate ceramics (BaZr x Ti 1- x O 3) was investigated. It is shown that trace amount of Sm ...The effect of Sm 2O 3 dopant on the sintering characteristics and dielectric properties of barium zirconium titanate ceramics (BaZr x Ti 1- x O 3) was investigated. It is shown that trace amount of Sm 2O 3 can greatly affect the grain growth and densification of barium zirconium titanate ceramics during sintering. At the same time, the dielectric peak at high temperature shifts to lower temperature and that at low temperature shifts to higher temperature. The two dielectric peaks overlap with each other when the Sm 2O 3 dopant content varies from 0 25% to 1%, and the maximum relative dielectric constant is greatly enhanced. These effects may be attributed to the substitution actions of the rare earth element in perovskite lattice. At the doping content of 0 75%, the dielectric constant maximum of 23570 can be obtained. By adopting some proper additives, an excellent Y5V dielective material is obtained, and the room temperature properties are as follows: relative dielectric constant ε RT ≥23,000, dielectric loss tgδ≤0 0075 and the breakdown strength under alternating field E b≥5 kV·mm -1 .展开更多
The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state me...The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics.展开更多
SrTiO 3 capacitor varistor multifunction ceramics is fabricated by a single sintering process. The research is carried out, mainly aimed at the influence of the doped Ag + on multifunction characteristics in SrTiO 3 c...SrTiO 3 capacitor varistor multifunction ceramics is fabricated by a single sintering process. The research is carried out, mainly aimed at the influence of the doped Ag + on multifunction characteristics in SrTiO 3 ceramics and its mechanism. The results show that the density of grain boundary acceptor state increases effectively due to the fact that Sr 2+ on grain surface is substituted by doped Ag distributing at grain boundary in form of Ag + during the course of oxidizing annealing, which is proposed to be the fundamental reason for understanding the significant difference of both the dielectric properties and varistor properties in SrTiO 3 ceramics samples with various Ag + contents.展开更多
The effect of Yb2O3 doping amount on the dielectric properties of (Ba, Sr)TiO3 (BST) series capacitor ceramics prepared using solid state reaction method were studied. With the increasing of Yb2O3 doping amount, the d...The effect of Yb2O3 doping amount on the dielectric properties of (Ba, Sr)TiO3 (BST) series capacitor ceramics prepared using solid state reaction method were studied. With the increasing of Yb2O3 doping amount, the dielectric constant(ε) of materials increased, the dielectric loss(tanδ) of materials decreased to minimum when w(Yb2O3) was 0.9%. The BST ceramics with high ε(10000), low tanδ(0.0213) and high DC breakdown voltage(7.2 kV·mm-1) were obtained. The influence of Yb2O3 doping amount on the structure of BST ceramics was studied by means of X-ray diffraction(XRD) and scanning electron microscope. The influencing mechanism of Yb2O3 on the dielectric properties of BST ceramics was studied. The results showed that Yb2O3 doping influenced the properties and structure of BST ceramics by means of forming defect solid solution, but did not influence crystal grain size,the crystal phase was single perovskite structure, did not influence XRD data of BST and did not improve capacitance temperature property greatly, but increase dielectric constant greatly. These results provided the basis for Yb2O3-doped BST series capacitor ceramics.展开更多
After people or vehicles press, piezoelectric ceramics can send a weak and unstable alternating current. According to this characteristic, we made feet pressing energy collection and utilization device based on piezoe...After people or vehicles press, piezoelectric ceramics can send a weak and unstable alternating current. According to this characteristic, we made feet pressing energy collection and utilization device based on piezoelectric ceramics. The two parts of this device includes energy storage and utilization. In terms of storage, the energy collection module, can deposit AC sent by piezoelectric ceramics in the super capacitor after rectification. In terms of utilization of energy, the device achieve a variety of usage: through the USB interface, it can supply power for different equipments, replace the mobile station of train stations and realize the function of saving the electricity as the night corridor induction lamp, combined with vibration module design and programmable timer. The whole structure is supported by an acrylic plate, which saves cost and have good durability. This device implements the storage and usage of idle feet pressing energy. In conclusion, it is helpful to provide a new idea for people' s low carbon lives and has a quite broad application prospect.展开更多
To further study the effect of sputtered Au film as transition electrode layer on the electrical properties and interface microstructures of Na20-PbO-Nb2O5-SiO2 multilayer glass-ceramic capacitors, Au films pre-deposi...To further study the effect of sputtered Au film as transition electrode layer on the electrical properties and interface microstructures of Na20-PbO-Nb2O5-SiO2 multilayer glass-ceramic capacitors, Au films pre-deposited at different time were prepared by DC magnetron sputtering. Compared with the single paste electrode structure, samples with Au films pre-deposited from 6 to 18 min have the consistent perfor- mance to effectively improve the electrical properties of the capacitors, resulting in the doubled breakdown strength, an increase of equivalent capacitance by 22% and a decrease of leakage current by an order of magnitude. SEM observations indicate that the Au films with deposition time from 6 to 18 min would all help the formation of a dense electrode/dielectric interface and inhibit the diffusion of Ag. The results reveal that Au film pre-deposited for 6 min as inner electrode was sufficient to improve the interface microstructure and therefore to inhibit the Ag diffusion and enhance the overall performance of the multi-layer glass-ceramic capacitors.展开更多
Dielectric capacitors have been widely used in pulsed power devices owing to their ultrahigh power density,fast charge/discharge speed,and excellent stability.However,developing lead-free dielectric materials with a c...Dielectric capacitors have been widely used in pulsed power devices owing to their ultrahigh power density,fast charge/discharge speed,and excellent stability.However,developing lead-free dielectric materials with a combination of high recoverable energy storage density and efficiency remains a challenge.Herein,a high energy storage density of 7.04 J/cm^(3) as well as a high efficiency of 80.5%is realized in the antiferroelectric Ag(Nb_(0.85)Ta_(0.15))O_(3)-modified BiFeO3-BaTiO3 ferroelectric ceramic.This achievement is mainly attributed to the combined effect of a high saturation polarization(Pmax),increased breakdown field(Eb),and reduction of the remnant polarization(Pr).The modification of pseudotetragonal BiFeO3 by Ag(Nb_(0.85)Ta_(0.15))O_(3) leads to a high Pmax,and the enhanced relaxor behavior gives rise to a small Pr.The promoted microstructure(such as a dense structure,fine grains,and compact grain boundaries)after modification results in a high breakdown strength.Furthermore,both the recoverable energy density and efficiency exhibit high stability over a broad range of operating frequencies(1–50 Hz)and working temperatures(25–120℃).These results suggest that the(0.67–x)BiFeO_(3)-0.33BaTiO_(3)-xAg(Nb_(0.85)Ta_(0.15))O_(3) ceramics can be highly competitive as a lead-free relaxor for energy storage applications.展开更多
为提升钛酸铋钠(NBT)基无铅陶瓷电容材料的储能性能,以A位掺杂方式向0.65[Na_(0.5)Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)中引入MgO,并采用固相烧结法制备了不同摩尔含量(x=0.01~0.06)的0.65[(Na1-x,Mgx)0.5Bi_(0.5)TiO_(3)]-0....为提升钛酸铋钠(NBT)基无铅陶瓷电容材料的储能性能,以A位掺杂方式向0.65[Na_(0.5)Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)中引入MgO,并采用固相烧结法制备了不同摩尔含量(x=0.01~0.06)的0.65[(Na1-x,Mgx)0.5Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)(NBT-SBT)陶瓷样品。通过SEM观察和XRD表征,发现随着Mg^(2+)含量的增加,NBT-SBT陶瓷的晶粒尺寸呈先减小后增大的变化,在Mg^(2+)掺入量(x)为0.025时,陶瓷晶粒尺寸最小。介电温谱和电滞回线测试表明该陶瓷为典型的铁电弛豫体,具有较高的介电常数(εr)和电极化强度(Pmax)。在100 k V/cm电场下,(Na0.94,Mg0.06)BT-SBT的可释放能量密度Wrec高达1.65 J/cm^(3),储能效率η为75%,综合性能优于同类NBT基陶瓷样品。结果表明,MgO掺杂的(Na1-x,Mgx)BT-SBT陶瓷具有优异的储能密度和效率,可为电子电力设备等领域的高功率储能电容器件的研究提供参考。展开更多
Water reuse is an effective way to solve the issues of current wastewater increments and water resource scarcity.Ultrafiltration,a promising method for water reuse,has the characteristics of low energy consumption,eas...Water reuse is an effective way to solve the issues of current wastewater increments and water resource scarcity.Ultrafiltration,a promising method for water reuse,has the characteristics of low energy consumption,easy operation,and high adaptability to coupling with other water treatment processes.However,emerging organic contaminants(EOCs)in municipal wastewater cannot be effectively intercepted by ultrafiltration,which poses significant challenges to the effluent quality and sustainability of ultrafiltration process.Here,we develop a cobalt single-atom catalyst-tailored ceramic membrane(Co1-NCNT-CM)in conjunction with an activated peroxymonosulfate(PMS)system,achieving excellent EOCs degradation and anti-fouling performance.An interfacial reaction mechanism effectively mitigates membrane fouling through a repulsive interaction with natural organic matter.The generation of singlet oxygen at the Co-N3-C active sites through a catalytic pathway(PMS/PMS*/OH*/O*/OO*/1 O_(2))exhibits selective oxidation of phenols and sulfonamides,achieving>90%removal rates.Our findings elucidate a multi-layered functional architecture within the Co1-NCNT-CM/PMS system,responsible for its superior performance in organic decontamination and membrane maintenance during secondary effluent treatment.It highlights the power of integrating Co1-NCNT-CM/PMS systems in advanced wastewater treatment frameworks,specifically for targeted EOCs removal,heralding a new direction for sustainable water management.展开更多
The rapid development of high-power and pulsed-power techniques inspires extensive investigates on high-performance ceramic-based capacitors.However,the low recoverable energy density(Wrec)hampers their wider applicat...The rapid development of high-power and pulsed-power techniques inspires extensive investigates on high-performance ceramic-based capacitors.However,the low recoverable energy density(Wrec)hampers their wider applications.Herein,the non-stoichiometric Bi_(0.5)Na_(0.5)TiO_(3)-based ceramics were designed and studied.The proper introduction of oxygen vacancies facilitated activating defect dipole,giving rise to reduced remanent polarization.Consequently,the optimal composition exhibited an exceptional high Wrec of 8.3 J/cm^(3),a high efficiency of 85%,and excellent anti-fatigue and thermal reliability.This work provides an efficient approach to explore ceramic capacitors with high capacitive energy storage performances.展开更多
With the increasing demand of high-power and pulsed power electronic devices,environmental-friendly potassium sodium niobate((Na_(0.5)K_(0.5))NbO_(3),KNN)ceramic-based capacitors have attracted much attention in recen...With the increasing demand of high-power and pulsed power electronic devices,environmental-friendly potassium sodium niobate((Na_(0.5)K_(0.5))NbO_(3),KNN)ceramic-based capacitors have attracted much attention in recent years owning to the boosted energy storage density(W_(rec)).Nevertheless,the dielectric loss also increases as the external electric field increases,which will generate much dissipated energy and raise the temperature of ceramic capacitors.Thus,an effective strategy is proposed to enhance the energy storage efficiency(η)via tailoring relaxor behavior and bad gap energy in the ferroelectric 0.9(Na_(0.5)K_(0.5))-NbO_(3)-0.1Bi(Zn_(2/3)(Nb_(x)Ta_(1−x))1/3)O_(3) ceramics.On the one hand,the more diverse ions in the B-sites owing to introducing the Ta could further disturb the long-range ferroelectric polar order to form the short−range polar nanoregions(PNRs),resulting in the highη.On the other hand,the introduction of Ta ions could boost the intrinsic band energy gap and thus improve the Eb.As a result,high Wrec of 3.29 J/cm^(3) and ultrahighηof 90.1%at the high external electric field of 310 kV/cm are achieved in x=0.5 sample.These results reveal that the KNN-based ceramics are promising lead-free candidate for high-power electronic devices.展开更多
基金supported by the Second Stage of Brain Korea 21 Projectssupported (in part) by the Solomon Mechanics Inc
文摘The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.
文摘The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional technology process and orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factor's levels for the dielectric properties of BST ceramics were obtained. The optimum formula for maximum dielectric constant (ε) and for minimum dielectric loss (tanδ) was obtained under the experimental conditions. The BST ceramics with optimum comprehensive properties was obtained by means of orthogonal design experiments, with the sintering temperature at 1200 ℃, the dielectric constant 5239, the dielectric loss 0.0097, withstand electric voltage over 6 MV·m^-1, capacitance temperature changing ence of various components on the providing the basis for preparation rate (△C/C) - 75.67%, and suited for Y5V character. The mechanism of the infludielectric properties of medium temperature sintering BST ceramics was studied, thus of multilayer capacitor ceramics and single-chip capacitor ceramics.
基金This work was supported by National Natural Science Foundation of China(Grant No.52272103 and 52072010),and Beijing Natural Science Foundation(Grant No.JL23004).
文摘With the rapid development of space exploration and new energy vehicles,it is urgent to build ultra-wide temperature multilayer ceramic capacitors(UWT MLCCs)to match electronic circuits that can withstand harsh environmental conditions.Relaxor ferroelectrics with diffuse phase transition feature are potential dielectrics for the construction of UWT MLCCs.However,how to ensure high dielectric constant together with low dielectric loss in the wide temperature region is still a big challenge.Here,the above difficulties are addressed by tailoring the combination types of polar nanoregions(PNRs)in the(1-x)(0.8Na_(0.5)Bi_(0.5)TiO_(3)-0.2K_(0.5)Bi_(0.5)TiO_(3))-xNaTaO3(NBT-KBT-xNT)system.Compared with PNRS types of P4bm+R3c and P4bm+Pbnm,the combination type of P4bm+Pbnm+R3c PNRs in NBT-KBT-0.31NT is the most beneficial to obtain comprehensive excellent dielectric performance because it can balance the relationship between high dielectric constant and temperature stability over a wide temperature region.Further,by optimizing the laminating pressure and co-firing temperature to realize a tight interfacial structure between the dielectric layer and the Pt inner electrode,a record-high dielectric constant(er=(907%±15%))together with low dielectric loss(tan δ≤0.025)is achieved over an ultra-wide range from-61℃ to 306℃ for NBT-KBT-0.31 NT MLCC,demonstrating that tailoring the combination types of PNRs is a powerful strategy in designing UWT MLCC dielectrics.
文摘The effect of Sm 2O 3 dopant on the sintering characteristics and dielectric properties of barium zirconium titanate ceramics (BaZr x Ti 1- x O 3) was investigated. It is shown that trace amount of Sm 2O 3 can greatly affect the grain growth and densification of barium zirconium titanate ceramics during sintering. At the same time, the dielectric peak at high temperature shifts to lower temperature and that at low temperature shifts to higher temperature. The two dielectric peaks overlap with each other when the Sm 2O 3 dopant content varies from 0 25% to 1%, and the maximum relative dielectric constant is greatly enhanced. These effects may be attributed to the substitution actions of the rare earth element in perovskite lattice. At the doping content of 0 75%, the dielectric constant maximum of 23570 can be obtained. By adopting some proper additives, an excellent Y5V dielective material is obtained, and the room temperature properties are as follows: relative dielectric constant ε RT ≥23,000, dielectric loss tgδ≤0 0075 and the breakdown strength under alternating field E b≥5 kV·mm -1 .
基金supported by the Found No.NSC96-2218-E-020-004-005
文摘The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics.
文摘SrTiO 3 capacitor varistor multifunction ceramics is fabricated by a single sintering process. The research is carried out, mainly aimed at the influence of the doped Ag + on multifunction characteristics in SrTiO 3 ceramics and its mechanism. The results show that the density of grain boundary acceptor state increases effectively due to the fact that Sr 2+ on grain surface is substituted by doped Ag distributing at grain boundary in form of Ag + during the course of oxidizing annealing, which is proposed to be the fundamental reason for understanding the significant difference of both the dielectric properties and varistor properties in SrTiO 3 ceramics samples with various Ag + contents.
文摘The effect of Yb2O3 doping amount on the dielectric properties of (Ba, Sr)TiO3 (BST) series capacitor ceramics prepared using solid state reaction method were studied. With the increasing of Yb2O3 doping amount, the dielectric constant(ε) of materials increased, the dielectric loss(tanδ) of materials decreased to minimum when w(Yb2O3) was 0.9%. The BST ceramics with high ε(10000), low tanδ(0.0213) and high DC breakdown voltage(7.2 kV·mm-1) were obtained. The influence of Yb2O3 doping amount on the structure of BST ceramics was studied by means of X-ray diffraction(XRD) and scanning electron microscope. The influencing mechanism of Yb2O3 on the dielectric properties of BST ceramics was studied. The results showed that Yb2O3 doping influenced the properties and structure of BST ceramics by means of forming defect solid solution, but did not influence crystal grain size,the crystal phase was single perovskite structure, did not influence XRD data of BST and did not improve capacitance temperature property greatly, but increase dielectric constant greatly. These results provided the basis for Yb2O3-doped BST series capacitor ceramics.
文摘After people or vehicles press, piezoelectric ceramics can send a weak and unstable alternating current. According to this characteristic, we made feet pressing energy collection and utilization device based on piezoelectric ceramics. The two parts of this device includes energy storage and utilization. In terms of storage, the energy collection module, can deposit AC sent by piezoelectric ceramics in the super capacitor after rectification. In terms of utilization of energy, the device achieve a variety of usage: through the USB interface, it can supply power for different equipments, replace the mobile station of train stations and realize the function of saving the electricity as the night corridor induction lamp, combined with vibration module design and programmable timer. The whole structure is supported by an acrylic plate, which saves cost and have good durability. This device implements the storage and usage of idle feet pressing energy. In conclusion, it is helpful to provide a new idea for people' s low carbon lives and has a quite broad application prospect.
基金financially supported by the National High Technical Research and Development Programme of China (No.2008AA03A236)
文摘To further study the effect of sputtered Au film as transition electrode layer on the electrical properties and interface microstructures of Na20-PbO-Nb2O5-SiO2 multilayer glass-ceramic capacitors, Au films pre-deposited at different time were prepared by DC magnetron sputtering. Compared with the single paste electrode structure, samples with Au films pre-deposited from 6 to 18 min have the consistent perfor- mance to effectively improve the electrical properties of the capacitors, resulting in the doubled breakdown strength, an increase of equivalent capacitance by 22% and a decrease of leakage current by an order of magnitude. SEM observations indicate that the Au films with deposition time from 6 to 18 min would all help the formation of a dense electrode/dielectric interface and inhibit the diffusion of Ag. The results reveal that Au film pre-deposited for 6 min as inner electrode was sufficient to improve the interface microstructure and therefore to inhibit the Ag diffusion and enhance the overall performance of the multi-layer glass-ceramic capacitors.
基金This work was supported by the Basic Science Center Project of NSFC no.52388201Tsinghua University-Toyota Research Center.
文摘Dielectric capacitors have been widely used in pulsed power devices owing to their ultrahigh power density,fast charge/discharge speed,and excellent stability.However,developing lead-free dielectric materials with a combination of high recoverable energy storage density and efficiency remains a challenge.Herein,a high energy storage density of 7.04 J/cm^(3) as well as a high efficiency of 80.5%is realized in the antiferroelectric Ag(Nb_(0.85)Ta_(0.15))O_(3)-modified BiFeO3-BaTiO3 ferroelectric ceramic.This achievement is mainly attributed to the combined effect of a high saturation polarization(Pmax),increased breakdown field(Eb),and reduction of the remnant polarization(Pr).The modification of pseudotetragonal BiFeO3 by Ag(Nb_(0.85)Ta_(0.15))O_(3) leads to a high Pmax,and the enhanced relaxor behavior gives rise to a small Pr.The promoted microstructure(such as a dense structure,fine grains,and compact grain boundaries)after modification results in a high breakdown strength.Furthermore,both the recoverable energy density and efficiency exhibit high stability over a broad range of operating frequencies(1–50 Hz)and working temperatures(25–120℃).These results suggest that the(0.67–x)BiFeO_(3)-0.33BaTiO_(3)-xAg(Nb_(0.85)Ta_(0.15))O_(3) ceramics can be highly competitive as a lead-free relaxor for energy storage applications.
文摘为提升钛酸铋钠(NBT)基无铅陶瓷电容材料的储能性能,以A位掺杂方式向0.65[Na_(0.5)Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)中引入MgO,并采用固相烧结法制备了不同摩尔含量(x=0.01~0.06)的0.65[(Na1-x,Mgx)0.5Bi_(0.5)TiO_(3)]-0.35Sr_(0.7)Bi_(0.2)TiO_(3)(NBT-SBT)陶瓷样品。通过SEM观察和XRD表征,发现随着Mg^(2+)含量的增加,NBT-SBT陶瓷的晶粒尺寸呈先减小后增大的变化,在Mg^(2+)掺入量(x)为0.025时,陶瓷晶粒尺寸最小。介电温谱和电滞回线测试表明该陶瓷为典型的铁电弛豫体,具有较高的介电常数(εr)和电极化强度(Pmax)。在100 k V/cm电场下,(Na0.94,Mg0.06)BT-SBT的可释放能量密度Wrec高达1.65 J/cm^(3),储能效率η为75%,综合性能优于同类NBT基陶瓷样品。结果表明,MgO掺杂的(Na1-x,Mgx)BT-SBT陶瓷具有优异的储能密度和效率,可为电子电力设备等领域的高功率储能电容器件的研究提供参考。
基金supported by the National Natural Science Foundation of China(U22A2024052300001)+2 种基金China Postdoctoral Science Foundation(2023M730275)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(2022TS01)Fundamental Research Funds for the Central Universities。
文摘Water reuse is an effective way to solve the issues of current wastewater increments and water resource scarcity.Ultrafiltration,a promising method for water reuse,has the characteristics of low energy consumption,easy operation,and high adaptability to coupling with other water treatment processes.However,emerging organic contaminants(EOCs)in municipal wastewater cannot be effectively intercepted by ultrafiltration,which poses significant challenges to the effluent quality and sustainability of ultrafiltration process.Here,we develop a cobalt single-atom catalyst-tailored ceramic membrane(Co1-NCNT-CM)in conjunction with an activated peroxymonosulfate(PMS)system,achieving excellent EOCs degradation and anti-fouling performance.An interfacial reaction mechanism effectively mitigates membrane fouling through a repulsive interaction with natural organic matter.The generation of singlet oxygen at the Co-N3-C active sites through a catalytic pathway(PMS/PMS*/OH*/O*/OO*/1 O_(2))exhibits selective oxidation of phenols and sulfonamides,achieving>90%removal rates.Our findings elucidate a multi-layered functional architecture within the Co1-NCNT-CM/PMS system,responsible for its superior performance in organic decontamination and membrane maintenance during secondary effluent treatment.It highlights the power of integrating Co1-NCNT-CM/PMS systems in advanced wastewater treatment frameworks,specifically for targeted EOCs removal,heralding a new direction for sustainable water management.
基金supported by the National Natural Science Foundation of China(Nos.12004181,52073144)Natural Science Foundation of Jiangsu Province(Nos.BK20200473,BK20201301)the Fundamental Research Funds for the Central Universities(No.30922010309)。
文摘The rapid development of high-power and pulsed-power techniques inspires extensive investigates on high-performance ceramic-based capacitors.However,the low recoverable energy density(Wrec)hampers their wider applications.Herein,the non-stoichiometric Bi_(0.5)Na_(0.5)TiO_(3)-based ceramics were designed and studied.The proper introduction of oxygen vacancies facilitated activating defect dipole,giving rise to reduced remanent polarization.Consequently,the optimal composition exhibited an exceptional high Wrec of 8.3 J/cm^(3),a high efficiency of 85%,and excellent anti-fatigue and thermal reliability.This work provides an efficient approach to explore ceramic capacitors with high capacitive energy storage performances.
基金supported by the National Natural Science Foundation of China(Grant No.52072150)the Young Elite Scientists Sponsorship Program of the Chinese Academy of Space Technology(CAST)and Open Foundation of Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices(EFMD2021002Z).
文摘With the increasing demand of high-power and pulsed power electronic devices,environmental-friendly potassium sodium niobate((Na_(0.5)K_(0.5))NbO_(3),KNN)ceramic-based capacitors have attracted much attention in recent years owning to the boosted energy storage density(W_(rec)).Nevertheless,the dielectric loss also increases as the external electric field increases,which will generate much dissipated energy and raise the temperature of ceramic capacitors.Thus,an effective strategy is proposed to enhance the energy storage efficiency(η)via tailoring relaxor behavior and bad gap energy in the ferroelectric 0.9(Na_(0.5)K_(0.5))-NbO_(3)-0.1Bi(Zn_(2/3)(Nb_(x)Ta_(1−x))1/3)O_(3) ceramics.On the one hand,the more diverse ions in the B-sites owing to introducing the Ta could further disturb the long-range ferroelectric polar order to form the short−range polar nanoregions(PNRs),resulting in the highη.On the other hand,the introduction of Ta ions could boost the intrinsic band energy gap and thus improve the Eb.As a result,high Wrec of 3.29 J/cm^(3) and ultrahighηof 90.1%at the high external electric field of 310 kV/cm are achieved in x=0.5 sample.These results reveal that the KNN-based ceramics are promising lead-free candidate for high-power electronic devices.