A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resul...A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area,which, from the bottom to the top,are the lower part of Banxi Group,Lower Cambrian(Niutitang Formation),Lower Silurian(Longmaxi Formation and Luoreping Formation),Upper Permian (Wujiaping Formation) and Lower Triassic(Daye Formation).On the basis of field survey combined with sand-box modeling,this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the"comb-like"folds,and the lower part of Cambrian detachment layer controlled the development of"trough-like"folds.Because of several detachment layers occurring in the study area,the development of duplex structures different scales is an important deformation mechanism,and the duplexes are the important structures distinguished from the typical detachment folding structures.Due to these duplexes,the surface structures and structural highs may not be the structural highs in the depth.Meanwhile,the detachment layers are good channels for oil/ gas migration benefiting the understanding of accumulation and migration of oil and gas.展开更多
Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively hi...Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean- ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIRl, with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.展开更多
The front of a thrust-detachment fault may have various styles such as decoupling, fold, forethrust and backthrust ones because of differences in magnitude, direction and time of the forces exerted on the fault and th...The front of a thrust-detachment fault may have various styles such as decoupling, fold, forethrust and backthrust ones because of differences in magnitude, direction and time of the forces exerted on the fault and the inhomogeneity of rock mechanical properties. They have different characteristics and are usually associated with gravity structure, inverse structure and diapir structure. These structures exist together in the same thrust-detachment fault and can influence, compensate for and convert into each other. They provide important grounds not only for the study of the dynamic state, propagation mode, evolutionary process and formation mechanism but also for the analysis of the petroleum generation, migration, accumulation and preservation and arrangement of drill holes in foreland basins.展开更多
Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are inter...Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle below the Moho surface occurred at the region between Songnan-Baodao and Changchang sags, from east to west with the early-stage spreading of the South China Sea. Therefore, this study not only helps in depicting the structural features and evolution of the deep-water basin in the Qiongdongnan Basin, but also provides the geological and structural evidence for establishing a unified model of continental margin extension and oceanic spreading.展开更多
Dinggye lies in the middle part of the Himalayan Orogen. A lot of low angle extension detachment faults have been developed in Dinggye area and some of them make up the main body of the South Tibet Detachment System. ...Dinggye lies in the middle part of the Himalayan Orogen. A lot of low angle extension detachment faults have been developed in Dinggye area and some of them make up the main body of the South Tibet Detachment System. On the whole, the extension direction of all the detachment faults is perpendicular to the strike of the Himalayan Orogen. Each detachment fault has its distinct characteristics. Mylonite was extensively developed in the detachment faults and can be divided into a variety of types such as siliceous mylonite, felsic mylonite, granite mylonite, protomylonite, crystallization mylonite and so on. On the basis of our field survey works, these detachment faults can be classified according to their locations into three units listed as follows: (1) In the northern part of the study area, the detachment faults occur on large scale and in orbicular shape, and form the middle layer of the metamorphic core complexes. (2) In the southern part of the study area, the detachment faults occur in linear shape that is parallel to the Himalayan Orogen and has a stable attitude, and have undergone two phases of development. In the first phase, the Rouqiechun Group rocks were formed and make up the hanging wall, while in the second phase the Jiachun Group rocks were formed and make up the hanging wall. (3) In the southeastern part of the study area, the detachment faults strike nearly along southeast direction in a stable way and some of these detachment faults were distorted by the late-formed faults and folds. Furthermore, in the southwestern part of the study area, the ductile shear zones are parallel to the detachment faults.展开更多
Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in...Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.展开更多
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water...The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.展开更多
外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,...外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,现有的方法较难对此类故障进行有效的预警。因此,针对该问题,基于监控数据提出一种深度特征提取的支持向量数据域描述(Support vector data description,SVDD)的故障预警方法,以实现对外涵静子叶片脱出故障的早期预警。首先,采用基于发动机气路性能辨识的建模方法,建立发动机特定性能参数的观测模型对气路参数进行深度特征提取,以真实状态量与模型观测量的差值作为航空发动机是否发生故障的特征;然后利用SVDD算法建立决策边界,实现故障数据的自动划分,决策边界生成的阈值可在故障发生之前的一定时间之内给出告警;最后,经过多次计算,结果表明,在故障早期直至故障发生的区间内,表征其健康状态的性能参数都与观测量有较大的偏移,表明了所选特征的有效性。使用数据增强方法生成故障仿真数据与真实数据进行对比验证,预警时间比故障真实发生时间预警模型平均提前3.14 h。展开更多
The east\|west striking Northern Altyn Tagh Fault, about 240km long between Bashkaogong (90°E, 39°25′N) and Lapeiquan (92°15′E, 39°25′N), was previously mapped as a north\|dipping thrust, juxtap...The east\|west striking Northern Altyn Tagh Fault, about 240km long between Bashkaogong (90°E, 39°25′N) and Lapeiquan (92°15′E, 39°25′N), was previously mapped as a north\|dipping thrust, juxtaposing late Archean\|Mesoproterozoic gneisses in the hanging wall over Paleozoic volcanics, plutons, turbidite, and melange complexes in the footwall. In order to estimate the total magnitude of slip along the Cenozoic Altyn Tagh fault, we conducted geologic mapping along four traverses across the Jinyan Shan where the fault lies. Our field observations suggest that the fault is south\|dipping, with dip angles varying from <25° in the east to about 40° in the west. The eastern fault zone exhibits mylonitic fabrics, whereas the western fault zone is characterized by cataclastic deformation. Kinematic indicators in the ductily deformed mylonitic shear zone consistently show a top\|to\|the\|south sense of shear, suggesting that the Northern Altyn Tagh fault is a south\|dipping normal fault, not a north\|dipping thrust.. The ductile shear zone is typically 30~40m thick, consisting of highly sheared metasediments (pelite and marble), granites, and granitic veins.The latter are systematically cut by small\|scale, south\|dipping ductile normal faults with displacements between 10s of cm to several meters, forming spectacular asymmetric boudinages in the sheared meta\|pelite matrix.The minimum displacement along the detachment is about 20km, as measured by the north\|south width of the exposed footwall gneisses. We renamed the Northern Altyn Tagh Fault in the Jinyan Shan region as the Lapeiquan detachment fault to avoid confusion with other east\|west trending Cenozoic faults to the west along the northern edge of the Altyn Tagh range (e.g., the Cenozoic Jianglisai fault near Qiemo), collectively known as the Northern Altyn Tagh fault system (see Cowgill et al., Geology,in press). The lower age bound of the Lapeiquan fault is Ordovician, as the fault cuts Ordovician volcanics and plutons in its hanging wall. As the Ordovician volcanic rocks are folded together with Carboniferous marbles and Jurassic sedimentary strata, it is likely that normal faulting along the Lapeiquan detachment postdates the Jurassic. The Lapeiquan detachment fault is covered by Quaternary sediments of the Tarim basin in the west, and is apparently truncated by the Cenozoic left\|slip Altyn Tagh fault to the east as indicated by regional geologic maps. If true, this relationship implies that the Lapeiquan fault predates the Cenozoic Altyn Tagh fault. The apparent truncational relationship between the Lapeiquan fault and the Altyn Tagh fault posses an important question: where is the counterpart of the Lapeiquan fault south of the Altyn Tagh fault? Preliminary mapping in the Yema Nan Shan south of the Altyn Tagh fault reveals a fragment of a low\|angle mylonitic shear zone, which is interpreted as a detachment fault because it puts lower\|grade meta\|pelite over higher\|grade mylonitic quartzite. The correlation of detachment faults in the Yema Nan Shan and the Lapeiquan area would imply an amount of about 280~300km left slip along the Altyn Tagh fault. Alternatively, movement along the Lapeiquan detachment fault could have been synchronous with the development of the Cenozoic Altyn Tagh fault. This interpretation requires no counterpart of the Lapeiquan fault south of the Altyn Tagh fault. Instead, it implies that a major topographic collapse event occurred in the Cenozoic along the northern edge of the Tibetan plateau during movement along the Altyn Tagh fault. On\|going thermochronologic analysis will provide constraints on the age of the detachment fault and a test for the two distinctive hypotheses.展开更多
The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fau...The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fault and is believed to be formed in the展开更多
Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin struct...Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea.展开更多
基金funded by the Science and Technology Research and Development Program of China Petroleum and Chemical Corporation(No.P06088)Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003).
文摘A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area,which, from the bottom to the top,are the lower part of Banxi Group,Lower Cambrian(Niutitang Formation),Lower Silurian(Longmaxi Formation and Luoreping Formation),Upper Permian (Wujiaping Formation) and Lower Triassic(Daye Formation).On the basis of field survey combined with sand-box modeling,this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the"comb-like"folds,and the lower part of Cambrian detachment layer controlled the development of"trough-like"folds.Because of several detachment layers occurring in the study area,the development of duplex structures different scales is an important deformation mechanism,and the duplexes are the important structures distinguished from the typical detachment folding structures.Due to these duplexes,the surface structures and structural highs may not be the structural highs in the depth.Meanwhile,the detachment layers are good channels for oil/ gas migration benefiting the understanding of accumulation and migration of oil and gas.
基金The National Natural Science Foundation of China under contract Nos 91028006 and 41206046the Dayang 115 under contact No.DYXM-115-02-3-01
文摘Large-scale detachment faults on mid-ocean ridges (MORs) provide a window into the deeper earth. They have megamullion on their corrugated surfaces, with exposed lower crustal and upper mantle rocks, rela- tively high residual Bouguer gravity anomaly and P-wave velocity, and are commonly associated with ocean- ic core complex. According to 30 detachment faults identified on MORs, we found that their distances to the axis mostly range from 5 to 50 km, half-spreading rates range from 6.8 to 17 mm/a, and activity time ranges from recent to 3 Ma. Most of the detachment faults are developed on the slow spreading Mid-Atlantic Ridge (MAR) and ultra-slow spreading Southwest Indian Ridge (SWIRl, with the dominant half-spreading rates of 7-13 mm/a, especially 10-13 mm/a. Furthermore, they mostly occur at the inside corner of one segment end and result in an asymmetric seafloor spreading. The detachment faults on MORs are mainly controlled by the tectonism and influenced by the magmatism. Long-lived detachment faults tend to be formed where the ridge magma supply is at a moderate level, although the tectonism is a first-order controlling factor. At the slow spreading ridges, detachment faults tend to occur where local magma supply is relatively low, whilst at the ultra-slow spreading ridges, they normally occur where local magma supply is relatively high. These faults are accompanied by hydrothermal activities, with their relationships being useful in the study of hydrothermal polymetallic sulfides and their origin.
文摘The front of a thrust-detachment fault may have various styles such as decoupling, fold, forethrust and backthrust ones because of differences in magnitude, direction and time of the forces exerted on the fault and the inhomogeneity of rock mechanical properties. They have different characteristics and are usually associated with gravity structure, inverse structure and diapir structure. These structures exist together in the same thrust-detachment fault and can influence, compensate for and convert into each other. They provide important grounds not only for the study of the dynamic state, propagation mode, evolutionary process and formation mechanism but also for the analysis of the petroleum generation, migration, accumulation and preservation and arrangement of drill holes in foreland basins.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Sci-ence Foundation of China under contract Nos 41272121,91028009 and 41102071
文摘Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle below the Moho surface occurred at the region between Songnan-Baodao and Changchang sags, from east to west with the early-stage spreading of the South China Sea. Therefore, this study not only helps in depicting the structural features and evolution of the deep-water basin in the Qiongdongnan Basin, but also provides the geological and structural evidence for establishing a unified model of continental margin extension and oceanic spreading.
基金supported by China Geological Survev's regional geological survey program(No.200013000145)in the Dinggve area(H45C004003)of the Qinghai-Tibet Plateau on a scale of 1:250 000
文摘Dinggye lies in the middle part of the Himalayan Orogen. A lot of low angle extension detachment faults have been developed in Dinggye area and some of them make up the main body of the South Tibet Detachment System. On the whole, the extension direction of all the detachment faults is perpendicular to the strike of the Himalayan Orogen. Each detachment fault has its distinct characteristics. Mylonite was extensively developed in the detachment faults and can be divided into a variety of types such as siliceous mylonite, felsic mylonite, granite mylonite, protomylonite, crystallization mylonite and so on. On the basis of our field survey works, these detachment faults can be classified according to their locations into three units listed as follows: (1) In the northern part of the study area, the detachment faults occur on large scale and in orbicular shape, and form the middle layer of the metamorphic core complexes. (2) In the southern part of the study area, the detachment faults occur in linear shape that is parallel to the Himalayan Orogen and has a stable attitude, and have undergone two phases of development. In the first phase, the Rouqiechun Group rocks were formed and make up the hanging wall, while in the second phase the Jiachun Group rocks were formed and make up the hanging wall. (3) In the southeastern part of the study area, the detachment faults strike nearly along southeast direction in a stable way and some of these detachment faults were distorted by the late-formed faults and folds. Furthermore, in the southwestern part of the study area, the ductile shear zones are parallel to the detachment faults.
基金funded by the Science and Technology Research and Development Program of the China Petroleum & Chemical Corporation(No.P06088)the Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003)
文摘Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.
基金Supported by the Science and Technology Project of CNOOC Ltd.(YXKY-2012-SHENHAI-01)China National Science and Technology Major Project(2011ZX05025-003+1 种基金 2016ZX05026-003)the National Natural Science Foundation of China(91128207)
文摘The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.
文摘外涵静子叶片是大涵道比涡扇发动机气路的核心部件之一,外涵静子脱出是一种较为严重的故障模式,此故障可能会导致飞机或其他发动机部件损伤,进而造成灾难性事故。对外涵静子叶片脱出故障的预警是一项重要的工作。但因其早期特征不明显,现有的方法较难对此类故障进行有效的预警。因此,针对该问题,基于监控数据提出一种深度特征提取的支持向量数据域描述(Support vector data description,SVDD)的故障预警方法,以实现对外涵静子叶片脱出故障的早期预警。首先,采用基于发动机气路性能辨识的建模方法,建立发动机特定性能参数的观测模型对气路参数进行深度特征提取,以真实状态量与模型观测量的差值作为航空发动机是否发生故障的特征;然后利用SVDD算法建立决策边界,实现故障数据的自动划分,决策边界生成的阈值可在故障发生之前的一定时间之内给出告警;最后,经过多次计算,结果表明,在故障早期直至故障发生的区间内,表征其健康状态的性能参数都与观测量有较大的偏移,表明了所选特征的有效性。使用数据增强方法生成故障仿真数据与真实数据进行对比验证,预警时间比故障真实发生时间预警模型平均提前3.14 h。
文摘The east\|west striking Northern Altyn Tagh Fault, about 240km long between Bashkaogong (90°E, 39°25′N) and Lapeiquan (92°15′E, 39°25′N), was previously mapped as a north\|dipping thrust, juxtaposing late Archean\|Mesoproterozoic gneisses in the hanging wall over Paleozoic volcanics, plutons, turbidite, and melange complexes in the footwall. In order to estimate the total magnitude of slip along the Cenozoic Altyn Tagh fault, we conducted geologic mapping along four traverses across the Jinyan Shan where the fault lies. Our field observations suggest that the fault is south\|dipping, with dip angles varying from <25° in the east to about 40° in the west. The eastern fault zone exhibits mylonitic fabrics, whereas the western fault zone is characterized by cataclastic deformation. Kinematic indicators in the ductily deformed mylonitic shear zone consistently show a top\|to\|the\|south sense of shear, suggesting that the Northern Altyn Tagh fault is a south\|dipping normal fault, not a north\|dipping thrust.. The ductile shear zone is typically 30~40m thick, consisting of highly sheared metasediments (pelite and marble), granites, and granitic veins.The latter are systematically cut by small\|scale, south\|dipping ductile normal faults with displacements between 10s of cm to several meters, forming spectacular asymmetric boudinages in the sheared meta\|pelite matrix.The minimum displacement along the detachment is about 20km, as measured by the north\|south width of the exposed footwall gneisses. We renamed the Northern Altyn Tagh Fault in the Jinyan Shan region as the Lapeiquan detachment fault to avoid confusion with other east\|west trending Cenozoic faults to the west along the northern edge of the Altyn Tagh range (e.g., the Cenozoic Jianglisai fault near Qiemo), collectively known as the Northern Altyn Tagh fault system (see Cowgill et al., Geology,in press). The lower age bound of the Lapeiquan fault is Ordovician, as the fault cuts Ordovician volcanics and plutons in its hanging wall. As the Ordovician volcanic rocks are folded together with Carboniferous marbles and Jurassic sedimentary strata, it is likely that normal faulting along the Lapeiquan detachment postdates the Jurassic. The Lapeiquan detachment fault is covered by Quaternary sediments of the Tarim basin in the west, and is apparently truncated by the Cenozoic left\|slip Altyn Tagh fault to the east as indicated by regional geologic maps. If true, this relationship implies that the Lapeiquan fault predates the Cenozoic Altyn Tagh fault. The apparent truncational relationship between the Lapeiquan fault and the Altyn Tagh fault posses an important question: where is the counterpart of the Lapeiquan fault south of the Altyn Tagh fault? Preliminary mapping in the Yema Nan Shan south of the Altyn Tagh fault reveals a fragment of a low\|angle mylonitic shear zone, which is interpreted as a detachment fault because it puts lower\|grade meta\|pelite over higher\|grade mylonitic quartzite. The correlation of detachment faults in the Yema Nan Shan and the Lapeiquan area would imply an amount of about 280~300km left slip along the Altyn Tagh fault. Alternatively, movement along the Lapeiquan detachment fault could have been synchronous with the development of the Cenozoic Altyn Tagh fault. This interpretation requires no counterpart of the Lapeiquan fault south of the Altyn Tagh fault. Instead, it implies that a major topographic collapse event occurred in the Cenozoic along the northern edge of the Tibetan plateau during movement along the Altyn Tagh fault. On\|going thermochronologic analysis will provide constraints on the age of the detachment fault and a test for the two distinctive hypotheses.
文摘The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fault and is believed to be formed in the
基金Supported by the China National Science and Technology Major Project(2016ZX05026-003,2011ZX05025-003)Science and Technology Project of CNOOC Limited(YXKY-2012-SHENHAI-01)CNOOC-KJ 135 ZDXM 37 SZ 01 SHENHAI。
文摘Based on the new seismic and drilling data and the recent related research results,this paper systematically analyzes the diversity and complexity of evolution process of crustal lithosphere structure and basin structure in the Pearl River Mouth Basin on the northern margin of the South China Sea.Three types of detachment faults of different structural levels exist:crust-mantle detachment,inter-crust detachment and upper crust detachment.It is considered that different types of extensional detachment control different subbasin structures.Many fault depressions controlled by upper crust detachment faults have been found in the Zhu I Depression located in the proximal zone.These detachment faults are usually reformed by magma emplacement or controlled by preexisting faults.Baiyun-Liwan Sag located in the hyperextension area shows different characteristics of internal structure.The Baiyun main sag with relative weak magmatism transformation is a wide-deep fault depression,which is controlled by crust-mantle detachment system.Extensive magmatism occurred in the eastern and southwest fault steps of the Baiyun Sag after Middle Eocene,and the crust ductile extensional deformation resulted in wide-shallow fault depression controlled by the upper crust detachment fault.Based on the classical lithosphere extensional breaking and basin tectonic evolution in the Atlantic margin,it is believed that the magmatic activities and pre-existing structures in the Mesozoic subduction continental margin background are important controlling factors for the diversified continental margin faulted structures in the northern South China Sea.