Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne...One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.展开更多
Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in c...Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.展开更多
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t...Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.展开更多
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the wid...The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.展开更多
Cancer,a disease as intricate as it is devastating,continues to challenge the medical and scientific community[1].Its complex nature is epitomized by the tumor microenvironment and tumor heterogeneity.As we delve deep...Cancer,a disease as intricate as it is devastating,continues to challenge the medical and scientific community[1].Its complex nature is epitomized by the tumor microenvironment and tumor heterogeneity.As we delve deeper into the realms of cancer research,the advent of transcriptome analysis has emerged as a powerful torchbearer,illuminating our understanding of these enigmatic facets of cancer biology[2].展开更多
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn...Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.展开更多
The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki...The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.展开更多
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi...The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.展开更多
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent...Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Despite having significant effects on social contagions,individual heterogeneity has frequently been overlooked in earlier studies.To better understand the complexity of social contagions,a non-Markovian model incorpo...Despite having significant effects on social contagions,individual heterogeneity has frequently been overlooked in earlier studies.To better understand the complexity of social contagions,a non-Markovian model incorporating heterogeneous social influence and adoption thresholds is introduced.For theoretical analysis,a generalized edge-based compartmental theory which considers the heterogeneities of social influence and adoption thresholds is developed.Focusing on the final adoption size,the critical propagation probability,and the phase transition type,social contagions for adoption thresholds that follow normal distributions with various standard deviations,follow various distributions,and correlate with degrees are investigated.When thresholds follow normal distributions,a larger standard deviation results in a larger final adoption size when the information propagation probability is relatively low.However,when the information propagation probability is relatively high,a larger standard deviation results in a smaller final adoption size.When thresholds follow various distributions,crossover phenomena in phase transition are observed when investigating the relationship of the final adoption size versus the average adoption threshold for some threshold distributions.When thresholds are correlated with degrees,similar crossover phenomena occur when investigating the relationship of the final adoption size versus the degree correlation index.Additionally,we find that increasing the heterogeneity of social influence suppresses the effects of adoption threshold heterogeneity on social contagions in three cases.Our theory predictions agree well with the simulation results.展开更多
Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW l...Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th and U, as well as 200 nm thick Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration, and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution. According to the stratification, it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.展开更多
The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is...In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.T...For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.These stress fields depend on the inclusions’size,shape,and distribution and will respond instantly to the evolving microstructure.This study develops a phase-field model concerningmodulus heterogeneity.The effect of modulus heterogeneity on the growth process and equilibrium state of theαplate in Ti-6Al-4V during precipitation is evaluated.Theαprecipitate exhibits strong anisotropy in shape upon cooling due to the interplay of the elastic strain and interfacial energy.The calculated orientation of the habit plane using the homogeneous modulus ofαphase shows the smallest deviation fromthat of the habit plane observed in the experiment,compared to the case where the homogeneous modulus ofβphase is adopted.In addition,the equilibrium volume ofαphase within the systemusing homogeneousβmodulus exhibits the largest dependency on the applied stresses.The stress fields across theα/βinterface are further calculated under the assumption of modulus heterogeneity and compared to those using homogeneous modulus of eitherαorβphase.This study provides an essential theoretical basis for developing mechanics models concerning systems with heterogeneous structures.展开更多
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net...The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12072217).
文摘One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.
基金financed by grants from the Natural Science Foundation of Jiangsu Province in China (BK20221515)the National Natural Science Foundation of China (32172266)。
文摘Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.
文摘Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
基金supported by the National Natural Science Foundation of China(Grant No.22273034)the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University。
文摘The COVID-19 pandemic has caused severe global disasters,highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures.While the widely used deterministic compartmental models have qualitatively presented continuous “analytical” insight and captured some transmission features,their treatment usually lacks spatiotemporal variation.Here,we propose a stochastic individual dynamical(SID)model to mimic the random and heterogeneous nature of epidemic propagation.The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual.Using this model,we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak.The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective,enabling a quantitative assessment of different interventions.Seemingly,this model is also applicable to studying stochastic processes at the “meter scale”,e.g.,human society’s collective dynamics.
基金National Nature Science Foundation for young scientist in Jiangsu Province(BK20220729).
文摘Cancer,a disease as intricate as it is devastating,continues to challenge the medical and scientific community[1].Its complex nature is epitomized by the tumor microenvironment and tumor heterogeneity.As we delve deeper into the realms of cancer research,the advent of transcriptome analysis has emerged as a powerful torchbearer,illuminating our understanding of these enigmatic facets of cancer biology[2].
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C1005950)Jana Shafi is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.
文摘The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.
基金the support of the National Nature Science Foundation of China(No.52074336)Emerging Big Data Projects of Sinopec Corporation(No.20210918084304712)。
文摘The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.
基金supported by National Natural Science Foundation of China(62101088,61801076,61971336)Natural Science Foundation of Liaoning Province(2022-MS-157,2023-MS-108)+1 种基金Key Laboratory of Big Data Intelligent Computing Funds for Chongqing University of Posts and Telecommunications(BDIC-2023-A-003)Fundamental Research Funds for the Central Universities(3132022230).
文摘Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62266030 and 61863025)。
文摘Despite having significant effects on social contagions,individual heterogeneity has frequently been overlooked in earlier studies.To better understand the complexity of social contagions,a non-Markovian model incorporating heterogeneous social influence and adoption thresholds is introduced.For theoretical analysis,a generalized edge-based compartmental theory which considers the heterogeneities of social influence and adoption thresholds is developed.Focusing on the final adoption size,the critical propagation probability,and the phase transition type,social contagions for adoption thresholds that follow normal distributions with various standard deviations,follow various distributions,and correlate with degrees are investigated.When thresholds follow normal distributions,a larger standard deviation results in a larger final adoption size when the information propagation probability is relatively low.However,when the information propagation probability is relatively high,a larger standard deviation results in a smaller final adoption size.When thresholds follow various distributions,crossover phenomena in phase transition are observed when investigating the relationship of the final adoption size versus the average adoption threshold for some threshold distributions.When thresholds are correlated with degrees,similar crossover phenomena occur when investigating the relationship of the final adoption size versus the degree correlation index.Additionally,we find that increasing the heterogeneity of social influence suppresses the effects of adoption threshold heterogeneity on social contagions in three cases.Our theory predictions agree well with the simulation results.
基金support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB34030000)the National Key R & D Program of China (No.2022YFA1602404)+2 种基金National Natural Science Foundation of China (No. U1832129)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2017309)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province of China (No.21IRTSTHN011)。
文摘Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program(Smilei) is employed to simulate the entire process of Station of Extreme Light(SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr, Fe, Ag, Ta, Au, Pb, Th and U, as well as 200 nm thick Al and Ca. An obvious stratification is observed in the simulation. The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration, and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution. According to the stratification, it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei. Two plasma clusters in the stratification are observed simultaneously, which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFC1804301)the National Science Fourdation of China(Grant No.42272279,41902244)partial support from a Discovery Grant awarded by the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金the financial support from the National Key Research and Development Program of China under Grant No.2022YFB3707803the Key Research Project of Zhejiang Laboratory under Grant No.2021PE0AC02+2 种基金the National Natural Science Foundation of China under Grant No.U2230102RS acknowledges the open research fund of Songshan Lake Materials Laboratory(2021SLABFK06)Guangdong Basic and Applied Basic Research Foundation(2024A1515011873).
文摘For media with inclusions(e.g.,precipitates,voids,reinforcements,and others),the difference in lattice parameter and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces.These stress fields depend on the inclusions’size,shape,and distribution and will respond instantly to the evolving microstructure.This study develops a phase-field model concerningmodulus heterogeneity.The effect of modulus heterogeneity on the growth process and equilibrium state of theαplate in Ti-6Al-4V during precipitation is evaluated.Theαprecipitate exhibits strong anisotropy in shape upon cooling due to the interplay of the elastic strain and interfacial energy.The calculated orientation of the habit plane using the homogeneous modulus ofαphase shows the smallest deviation fromthat of the habit plane observed in the experiment,compared to the case where the homogeneous modulus ofβphase is adopted.In addition,the equilibrium volume ofαphase within the systemusing homogeneousβmodulus exhibits the largest dependency on the applied stresses.The stress fields across theα/βinterface are further calculated under the assumption of modulus heterogeneity and compared to those using homogeneous modulus of eitherαorβphase.This study provides an essential theoretical basis for developing mechanics models concerning systems with heterogeneous structures.
基金This research was supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010)the National Science Foundation of China(61972302).
文摘The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.