In high performance aerospace systems where weight and aerodynamics are of major concern, fiber reinforced composite laminates can be tailored to achieve desirable mechanical properties and accommodate low-profile mic...In high performance aerospace systems where weight and aerodynamics are of major concern, fiber reinforced composite laminates can be tailored to achieve desirable mechanical properties and accommodate low-profile microstrip antenna. This work aims at the analysis of microstrip antenna array embedded in composite laminated substrates. The size of a single antenna is first calculated by spectral domain analysis to model the effects of the substrate’s electromagnetic property and the orientation of the laminate layers. The antenna array as well as the feed network, composed of microstrip transmission lines, quarter wave-length impedance transformers, and T-junction power dividers, is then tuned to accommodate the effects of the coupling between the antenna elements and the feed network loss. The performance of the 1 × 2, 1 × 4, and 1 × 8 linear array and 2 × 2 and 2 × 4 planar array are shown to have better directivity when embedded in composite laminated substrate compared with those when attached on isotropic substrate. Both 1 × 2 and 1 × 4 arrays at 2.4 GHz are validated experimentally to achieve better coverage.展开更多
A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured imp...A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured impedance bandwidth (voltage standing wave ratio (VSWR)≤2) is over 16%, which agrees well with the simulated one. It is a low-cost wideband design with compact simple structure, suited for military and commercial application.展开更多
A mutual coupling suppression method is proposed for microstrip antenna array by cutting four small semi-circle annular apertures on the metal plate. The structure of antenna array is composed of 2 × 2 four eleme...A mutual coupling suppression method is proposed for microstrip antenna array by cutting four small semi-circle annular apertures on the metal plate. The structure of antenna array is composed of 2 × 2 four elements. The antenna consists of double layer dielectric, and it realizes circular polarization characteristics by cutting rectangular slot on circular patch in the direction of 45°, by using aperture coupling feeding and reverse feeding principle. There is 90* phase difference between adjacent antenna elements. Thus, it cuts off the coupling current field between the elements, suppresses the surface wave and reduces the mutual coupling by cutting four semi-circle annular apertures symmetrically on the metal plate. The simulation results show that after cutting four semi-circle annular apertures, the antenna array coupling coefficients decrease significantly, and the side and back lobe levels are suppressed effectively with the gain of antenna improved. So the proposed method is effective to suppress microstrip antenna array mutual coupling.展开更多
Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two ...Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two types of circular polarization in satellite communications,they are used to support uplink and downlink communications.Circularly polarized antennas are used also in radar system for target detection,tracking and identification.The“three-element circularly polarized microstrip array antenna”is designed to produce left-handed circular polarization,make its size compact,make its bandwidth wider than 3.7-4.2GHz and achieve high gain.Circular polarization element antenna and three-element circularly polarized microstrip array antenna are designed and simulated in software HFSS,and the circular polarization element antenna is manufactured and tested in anechoic chamber.For circular polarization element antenna and three-element circularly polarized microstrip array antenna,the study analyzed these parameters:AR,S(1,1),VSWR,bandwidth,normalized impedance,gain and realized gain,radiation efficiency.After optimized,the study get the required results of them.展开更多
An uncommon fractal construction method is applied in the microwave element design. A novel fractal defected ground structure (DGS) based on micro electro-mechanical system (MEMS) is proposed. The size of this nov...An uncommon fractal construction method is applied in the microwave element design. A novel fractal defected ground structure (DGS) based on micro electro-mechanical system (MEMS) is proposed. The size of this novel fractal DGS can achieve 86% size reduction compared with the conventional dumbbell type DGS. This novel fractal DGS is used in the miniaturization design of L-band microstrip antenna array. The simulation result shows that this novel fractal DGS can effectively reduce the mutual coupling between the antenna elements, so it is helpful to the miniaturization of microstrip array, namely the approximately same gain value can be achieved with the shorter distance between elements.展开更多
In recent years, microstrip antennas have been more widely applied in satellite communications, mobile phones, unmanned aerial vehicle (UAV), and weapons. A micro-electro-mechanical systems-based (MEMS-based) high...In recent years, microstrip antennas have been more widely applied in satellite communications, mobile phones, unmanned aerial vehicle (UAV), and weapons. A micro-electro-mechanical systems-based (MEMS-based) high-resistance silicon C-band microstrip antenna array has been designed for the intelligent ammunition. The center frequency is 4.5 GHz. A cavity has been designed in substrate to reduce the dielectric constant of silicon and high-resistance silicon has been used as the material of substrate to improve the gain of antenna. It is very easy to be manufactured by using MEMS technology because of the improved structure of the antenna. The results show that the gain of the antenna is 8 dB and voltage standing wave ratio (VSWR) is less than 2 by the analysis and simulation in high freauencv structure simulator (HFSS).展开更多
In this study, we constructed a 4-element linear array antenna using four 20 GHz band microstrip patch antennas with a structure such that the signal is fed to the patch antennas from open-end coplanar waveguides with...In this study, we constructed a 4-element linear array antenna using four 20 GHz band microstrip patch antennas with a structure such that the signal is fed to the patch antennas from open-end coplanar waveguides without contact. We investigated factors related to the design of linear array patch antennas. To adjust the maximum radiation direction and reduce return loss, we optimized the spacing between the elements and their shape. With an element spacing of 11.50 mm, patch width of 3.90 mm, and patch length of 4.15 mm, we obtained a resonance frequency of 20.05 GHz and a return loss of -29.59 dB at the resonance frequency. However, in the case of a 4-element linear array antenna structure, undesired resonances occurred in frequency bands other than the design resonance frequency band of 20 GHz. To suppress these undesired resonances and obtaining stable operation at the design frequency, we propose a new structure in which the feed line is loaded with a short stub, and show through computer simulations that the occurrence of undesired resonances can be sufficiently suppressed. Furthermore, we demonstrate the problem of radiation gain reduction caused by introducing a short stub, propose a design method for a new structure in which the feed line has slits between the stubs, and show improvement of the antenna gain by 0.5 dBi.展开更多
In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. ...In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.展开更多
An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of ...An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of 23% and 21% for dual polarization ports, respectively. The measured isolation between two polarization ports is better than 35 dB and the measured cross-polarization level below -25 dB in the main beam over the operation frequency band of 9.35 GHz to 9.75 GHz. This array is well suitable for X-band SAR (synthetic aperture radar) antenna apphcation.展开更多
Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure,which provide a broad impedance bandwidth and meanwhile bring large sidelobes and backlobes. A novel uni-planar co...Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure,which provide a broad impedance bandwidth and meanwhile bring large sidelobes and backlobes. A novel uni-planar compact electromagnetic band-gap( EBG) structure is proposed, which shows excellent performance when applied to broadband stacked or aperture coupled microstrip array antennae. The test results indicate that,the directivity is effectively improved,and the front-to-back ratio is increased,and the thickness of the antenna is reduced. These improvements make this structure better used in airborne antennae.展开更多
A low-sidelobe circularly-polarized(CP) microstrip patch array for 2.4 GHz radio frequency identification(RFID) readers is presented.The antenna array with a Chebyshev current distribution is composed of 6 microstrip ...A low-sidelobe circularly-polarized(CP) microstrip patch array for 2.4 GHz radio frequency identification(RFID) readers is presented.The antenna array with a Chebyshev current distribution is composed of 6 microstrip elements.The CP operation is obtained by the quasi-square patch with difference in lengths of the two sides.The antenna has been investigated numerically and experimentally.Measured results show that the array has a Chebyshev pattern with the sidelobe level of-23 dB, the half-power beamwidth of 16° and an impedance bandwidth(S11≤-10 dB) of 130 MHz, which is suitable for RFID reader applications.展开更多
The circular sector patch antenna is studied in C-band (4 GHz - 8 GHz). In this paper, we present steps of designing the circular sector antenna then a comparison with a rectangular antenna in literature. High Frequen...The circular sector patch antenna is studied in C-band (4 GHz - 8 GHz). In this paper, we present steps of designing the circular sector antenna then a comparison with a rectangular antenna in literature. High Frequency Structure Simulator (HFSS) software is used to compute the gain, axial ratio, radiation pattern, and return loss S11 of proposed antenna. Based on the designed patch antenna, many phased arrays will be simulated using HFSS. The impact of distance between element, number of element and phase will be checked. Obtained results are analyzed and compared with literature.展开更多
Now a day’s accidents are very common due to increased population of vehicle. In order to ensure safety measures in the vehicle this paper has proposed some methodologies regarding careful driving by automatically sc...Now a day’s accidents are very common due to increased population of vehicle. In order to ensure safety measures in the vehicle this paper has proposed some methodologies regarding careful driving by automatically scanning and analyzing the blind spot area of an intelligent mobile vehicle. A vehicular antenna with minimum perturbation is proposed to be fitted on the vehicle and collect information of the concern area which would ensure visibility of the operator i.e. masked or integrated within the car body. This paper has dealt with the design of Tchebyscheff polynomial based prototype planar microstrip phased array antenna and also redesigned the same when implemented in the body of the car being considered as an electromagnetically large element. Both the design has been experimentally verified with the measurement. The simulated and the measured results in both the cases are found to be in good agreement. More than 11 dB gain was observed at perfectly 30° angles from its broad side direction as desired for blind spot detection with minimum amount of electromagnetic interference inside the car.展开更多
Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of str...Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of strength as it travels over long distances. This is true in the military with missile, radar, and satellite systems, etc. Antenna arrays are commonly employed to focus electromagnetic waves in a certain direction that cannot be achieved perfectly with a single-element antenna. The goal of this study is to design a rectangular microstrip high-gain 2 × 1 array antenna using ADS Momentum. This microstrip patch array design makes use of the RT-DUROID 5880 as a substrate with a dielectric constant of 2.2, substrate height of 1.588 mm, and tangent loss of 0.001. To achieve efficient gain and return loss characteristics for the proposed array antenna, RT-Duroid is a good choice of dielectric material. The designed array antenna is made up of two rectangular patches, which have a resonance frequency of 3.3 GHz. These rectangular patches are excited by microstrip feed lines with 13 mm lengths and 4.8 mm widths. The impedance of the patches is perfectly matched by these transmission lines, which helps to get better antenna characteristics. At a resonance frequency of 3.3 GHz, the suggested antenna array has a directivity of 10.50 dB and a maximum gain of 9.90 dB in the S-band. The S parameters, 3D radiation pattern, directivity, gain, and efficiency of the constructed array antenna are all available in ADS Momentum.展开更多
This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects ...This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.展开更多
A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several t...A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.展开更多
The present work designed and investigated a 3D basic model for breast cancer detection at the ISM band. The model consists of two multi-slotted rectangular patch antennas and a three-layer breast phantom containing t...The present work designed and investigated a 3D basic model for breast cancer detection at the ISM band. The model consists of two multi-slotted rectangular patch antennas and a three-layer breast phantom containing two tumors. A multi-slotted antenna was designed at 2.45 GHz using CST STUDIO SUITE 2018, where the simulated results showed a return loss better than -35 dB and attended more than 77 MHz bandwidth. The diagnosis approach is based on exploiting the electrical properties (frequency dependent) of breast tissues, i.e., mass density, relative permittivity, and conductivity. Once the proposed slotted antenna radiates electromagnetic signals toward the breast model (with and without tumors), the radiation properties in terms of the scattering parameters (S<sub>11</sub> and S<sub>21</sub>), the electrical field, the power flow, the current density, and the power loss density were altered. As a result, the values of these radiation parameters increased when tumors were implanted inside the breast model, informing the presence of cancerous tissues. Moreover, the specific absorption rate (SAR) was estimated as a function of input powers, where the proposed antenna showed a set of low SAR values compared to the IEEE standard of 1.6 W/kg, validating its potential use for diagnosing purposes. The simulated results indicated the prospective use of two slotted antennas (in the first instance) to detect multiple tumors which could be a challenging task using a single-element antenna, where the ultimate goal is to realize a compact antenna array to detect multi-tumors.展开更多
A wideband 2×2 sequential-phase fed circularly polarized(CP)microstrip antenna array(MAA)with sequentially rotated elements is proposed.Firstly,the antenna element loaded with shorting pins is studied as compared...A wideband 2×2 sequential-phase fed circularly polarized(CP)microstrip antenna array(MAA)with sequentially rotated elements is proposed.Firstly,the antenna element loaded with shorting pins is studied as compared to the traditional counterpart.Then,a feeding network is designed to be connected together in a sequential rotation manner,resulting in forming a four-port network to allow symmetrical positioning of CP microstrip patch elements.After that,straight strips are added to the feeding network in order to increase the distance and reduce coupling between array elements.They also play a role in improving the impedance matching of the array.Finally,the proposed antenna array is designed and simulated.The results are presented that its impedance bandwidth is about 36.3%at 24.1~34.8 GHz for|S_(11)|<10 dB and axial-ratio(AR)bandwidth is about 20.4%at 24.2~29.7 GHz for AR【3 dB.Besides,a peak gain of 11.1 dBic is simulated over the operating frequency range,which is significantly improved compared to the classic and existing works.展开更多
Based on the nonlinearity of the nonlinear optical coupler (NOC) and the amplifying capacity of the backward Raman fiber amplifier (PBRFA), two new optical systems to compress the optical pulse (Optical Pulse Self-Com...Based on the nonlinearity of the nonlinear optical coupler (NOC) and the amplifying capacity of the backward Raman fiber amplifier (PBRFA), two new optical systems to compress the optical pulse (Optical Pulse Self-Compressor: OPSC) are proposed. Using the expressions describing relationship between input and output intensities from ports of the NOC and the derived expression describing the amplification of the PBRFA, the compressing process of the optical pulse propagating through the OPSC is simulated. The results show that the peak of the optical pulse will be enhanced and the duration of the optical pulse will be reduced significantly. Consequently, the shape of input pulse is completely compressed with the certain efficiency. It means the optical pulse is self-compressed without the external pump pulse by proposing the OPSC.展开更多
Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, envi...Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, environmental management, healthcare, and smart grid. Ad hoc networks have some limitations namely short operating life, unreliability, scalability, delay, high interference, and scarce resources. In order to overcome these limitations, numerous researches have been carried out. Smart antenna integration is one of them. It has been shown in the literatures that smart antenna can improve network’s capacity, increase network lifetime, reduce delay, and improve scalability by directing antenna radiation pattern in a desired direction. But, producing a desired antenna radiation pattern is not a simple task for resource constraint ad hoc networks. A careful selection of beam forming algorithm is required. In this paper we show that smart antenna system, consisting of circular microstrip antennas and arranged in a linear arrangement, is the most suitable choice for ad hoc network. We compare a number of smart antenna algorithms in this paper under different noisy conditions. We show that the Least Square Constant Modulus (LSCM) and Least Constant Modulus (LCM) algorithms outperform other algorithms in terms of directivity and minimized side lobes.展开更多
文摘In high performance aerospace systems where weight and aerodynamics are of major concern, fiber reinforced composite laminates can be tailored to achieve desirable mechanical properties and accommodate low-profile microstrip antenna. This work aims at the analysis of microstrip antenna array embedded in composite laminated substrates. The size of a single antenna is first calculated by spectral domain analysis to model the effects of the substrate’s electromagnetic property and the orientation of the laminate layers. The antenna array as well as the feed network, composed of microstrip transmission lines, quarter wave-length impedance transformers, and T-junction power dividers, is then tuned to accommodate the effects of the coupling between the antenna elements and the feed network loss. The performance of the 1 × 2, 1 × 4, and 1 × 8 linear array and 2 × 2 and 2 × 4 planar array are shown to have better directivity when embedded in composite laminated substrate compared with those when attached on isotropic substrate. Both 1 × 2 and 1 × 4 arrays at 2.4 GHz are validated experimentally to achieve better coverage.
基金Project supported by the National Natural Science Foundation of China (Grant No.60871030)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A compact wideband microstrip array antenna with a squint beam is introduced without the matched load. Its measured beam is at 10° offset to the broadside with a measured gain of 12 dB at 10 GHz. The measured impedance bandwidth (voltage standing wave ratio (VSWR)≤2) is over 16%, which agrees well with the simulated one. It is a low-cost wideband design with compact simple structure, suited for military and commercial application.
基金Qingdao Basic Research of Science and Technology Plan Projects(No.13-1-4-132-jch)
文摘A mutual coupling suppression method is proposed for microstrip antenna array by cutting four small semi-circle annular apertures on the metal plate. The structure of antenna array is composed of 2 × 2 four elements. The antenna consists of double layer dielectric, and it realizes circular polarization characteristics by cutting rectangular slot on circular patch in the direction of 45°, by using aperture coupling feeding and reverse feeding principle. There is 90* phase difference between adjacent antenna elements. Thus, it cuts off the coupling current field between the elements, suppresses the surface wave and reduces the mutual coupling by cutting four semi-circle annular apertures symmetrically on the metal plate. The simulation results show that after cutting four semi-circle annular apertures, the antenna array coupling coefficients decrease significantly, and the side and back lobe levels are suppressed effectively with the gain of antenna improved. So the proposed method is effective to suppress microstrip antenna array mutual coupling.
文摘Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two types of circular polarization in satellite communications,they are used to support uplink and downlink communications.Circularly polarized antennas are used also in radar system for target detection,tracking and identification.The“three-element circularly polarized microstrip array antenna”is designed to produce left-handed circular polarization,make its size compact,make its bandwidth wider than 3.7-4.2GHz and achieve high gain.Circular polarization element antenna and three-element circularly polarized microstrip array antenna are designed and simulated in software HFSS,and the circular polarization element antenna is manufactured and tested in anechoic chamber.For circular polarization element antenna and three-element circularly polarized microstrip array antenna,the study analyzed these parameters:AR,S(1,1),VSWR,bandwidth,normalized impedance,gain and realized gain,radiation efficiency.After optimized,the study get the required results of them.
基金supported by the 11th Five-Year Plan under Grant No. 11001030203
文摘An uncommon fractal construction method is applied in the microwave element design. A novel fractal defected ground structure (DGS) based on micro electro-mechanical system (MEMS) is proposed. The size of this novel fractal DGS can achieve 86% size reduction compared with the conventional dumbbell type DGS. This novel fractal DGS is used in the miniaturization design of L-band microstrip antenna array. The simulation result shows that this novel fractal DGS can effectively reduce the mutual coupling between the antenna elements, so it is helpful to the miniaturization of microstrip array, namely the approximately same gain value can be achieved with the shorter distance between elements.
基金supported by the Chinese PLA General Armament Department under Grant No.51318020305
文摘In recent years, microstrip antennas have been more widely applied in satellite communications, mobile phones, unmanned aerial vehicle (UAV), and weapons. A micro-electro-mechanical systems-based (MEMS-based) high-resistance silicon C-band microstrip antenna array has been designed for the intelligent ammunition. The center frequency is 4.5 GHz. A cavity has been designed in substrate to reduce the dielectric constant of silicon and high-resistance silicon has been used as the material of substrate to improve the gain of antenna. It is very easy to be manufactured by using MEMS technology because of the improved structure of the antenna. The results show that the gain of the antenna is 8 dB and voltage standing wave ratio (VSWR) is less than 2 by the analysis and simulation in high freauencv structure simulator (HFSS).
文摘In this study, we constructed a 4-element linear array antenna using four 20 GHz band microstrip patch antennas with a structure such that the signal is fed to the patch antennas from open-end coplanar waveguides without contact. We investigated factors related to the design of linear array patch antennas. To adjust the maximum radiation direction and reduce return loss, we optimized the spacing between the elements and their shape. With an element spacing of 11.50 mm, patch width of 3.90 mm, and patch length of 4.15 mm, we obtained a resonance frequency of 20.05 GHz and a return loss of -29.59 dB at the resonance frequency. However, in the case of a 4-element linear array antenna structure, undesired resonances occurred in frequency bands other than the design resonance frequency band of 20 GHz. To suppress these undesired resonances and obtaining stable operation at the design frequency, we propose a new structure in which the feed line is loaded with a short stub, and show through computer simulations that the occurrence of undesired resonances can be sufficiently suppressed. Furthermore, we demonstrate the problem of radiation gain reduction caused by introducing a short stub, propose a design method for a new structure in which the feed line has slits between the stubs, and show improvement of the antenna gain by 0.5 dBi.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.
基金Project supported by the Specialized Research Fund for the Doctoral Program of High Education of China (Grant No.20050280016)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of 23% and 21% for dual polarization ports, respectively. The measured isolation between two polarization ports is better than 35 dB and the measured cross-polarization level below -25 dB in the main beam over the operation frequency band of 9.35 GHz to 9.75 GHz. This array is well suitable for X-band SAR (synthetic aperture radar) antenna apphcation.
基金Sponsored by the Fujian Education Department(Grant No.JA13183)the Fujian Provincial Department of Science and Technology(Grant No.2013H0035)
文摘Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure,which provide a broad impedance bandwidth and meanwhile bring large sidelobes and backlobes. A novel uni-planar compact electromagnetic band-gap( EBG) structure is proposed, which shows excellent performance when applied to broadband stacked or aperture coupled microstrip array antennae. The test results indicate that,the directivity is effectively improved,and the front-to-back ratio is increased,and the thickness of the antenna is reduced. These improvements make this structure better used in airborne antennae.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘A low-sidelobe circularly-polarized(CP) microstrip patch array for 2.4 GHz radio frequency identification(RFID) readers is presented.The antenna array with a Chebyshev current distribution is composed of 6 microstrip elements.The CP operation is obtained by the quasi-square patch with difference in lengths of the two sides.The antenna has been investigated numerically and experimentally.Measured results show that the array has a Chebyshev pattern with the sidelobe level of-23 dB, the half-power beamwidth of 16° and an impedance bandwidth(S11≤-10 dB) of 130 MHz, which is suitable for RFID reader applications.
文摘The circular sector patch antenna is studied in C-band (4 GHz - 8 GHz). In this paper, we present steps of designing the circular sector antenna then a comparison with a rectangular antenna in literature. High Frequency Structure Simulator (HFSS) software is used to compute the gain, axial ratio, radiation pattern, and return loss S11 of proposed antenna. Based on the designed patch antenna, many phased arrays will be simulated using HFSS. The impact of distance between element, number of element and phase will be checked. Obtained results are analyzed and compared with literature.
文摘Now a day’s accidents are very common due to increased population of vehicle. In order to ensure safety measures in the vehicle this paper has proposed some methodologies regarding careful driving by automatically scanning and analyzing the blind spot area of an intelligent mobile vehicle. A vehicular antenna with minimum perturbation is proposed to be fitted on the vehicle and collect information of the concern area which would ensure visibility of the operator i.e. masked or integrated within the car body. This paper has dealt with the design of Tchebyscheff polynomial based prototype planar microstrip phased array antenna and also redesigned the same when implemented in the body of the car being considered as an electromagnetically large element. Both the design has been experimentally verified with the measurement. The simulated and the measured results in both the cases are found to be in good agreement. More than 11 dB gain was observed at perfectly 30° angles from its broad side direction as desired for blind spot detection with minimum amount of electromagnetic interference inside the car.
文摘Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of strength as it travels over long distances. This is true in the military with missile, radar, and satellite systems, etc. Antenna arrays are commonly employed to focus electromagnetic waves in a certain direction that cannot be achieved perfectly with a single-element antenna. The goal of this study is to design a rectangular microstrip high-gain 2 × 1 array antenna using ADS Momentum. This microstrip patch array design makes use of the RT-DUROID 5880 as a substrate with a dielectric constant of 2.2, substrate height of 1.588 mm, and tangent loss of 0.001. To achieve efficient gain and return loss characteristics for the proposed array antenna, RT-Duroid is a good choice of dielectric material. The designed array antenna is made up of two rectangular patches, which have a resonance frequency of 3.3 GHz. These rectangular patches are excited by microstrip feed lines with 13 mm lengths and 4.8 mm widths. The impedance of the patches is perfectly matched by these transmission lines, which helps to get better antenna characteristics. At a resonance frequency of 3.3 GHz, the suggested antenna array has a directivity of 10.50 dB and a maximum gain of 9.90 dB in the S-band. The S parameters, 3D radiation pattern, directivity, gain, and efficiency of the constructed array antenna are all available in ADS Momentum.
文摘This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.
文摘A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.
文摘The present work designed and investigated a 3D basic model for breast cancer detection at the ISM band. The model consists of two multi-slotted rectangular patch antennas and a three-layer breast phantom containing two tumors. A multi-slotted antenna was designed at 2.45 GHz using CST STUDIO SUITE 2018, where the simulated results showed a return loss better than -35 dB and attended more than 77 MHz bandwidth. The diagnosis approach is based on exploiting the electrical properties (frequency dependent) of breast tissues, i.e., mass density, relative permittivity, and conductivity. Once the proposed slotted antenna radiates electromagnetic signals toward the breast model (with and without tumors), the radiation properties in terms of the scattering parameters (S<sub>11</sub> and S<sub>21</sub>), the electrical field, the power flow, the current density, and the power loss density were altered. As a result, the values of these radiation parameters increased when tumors were implanted inside the breast model, informing the presence of cancerous tissues. Moreover, the specific absorption rate (SAR) was estimated as a function of input powers, where the proposed antenna showed a set of low SAR values compared to the IEEE standard of 1.6 W/kg, validating its potential use for diagnosing purposes. The simulated results indicated the prospective use of two slotted antennas (in the first instance) to detect multiple tumors which could be a challenging task using a single-element antenna, where the ultimate goal is to realize a compact antenna array to detect multi-tumors.
基金This work was supported by National Natural Science Foundation of China under Grant Nos.61801348 and 61971475University of Macao under Grant Nos.MYRG2017-00007-FST,MYRG2018-00073-FST,and CPG2020-00003-FSTState Key Laboratory of Millimeter Waves under Contract K202031.
文摘A wideband 2×2 sequential-phase fed circularly polarized(CP)microstrip antenna array(MAA)with sequentially rotated elements is proposed.Firstly,the antenna element loaded with shorting pins is studied as compared to the traditional counterpart.Then,a feeding network is designed to be connected together in a sequential rotation manner,resulting in forming a four-port network to allow symmetrical positioning of CP microstrip patch elements.After that,straight strips are added to the feeding network in order to increase the distance and reduce coupling between array elements.They also play a role in improving the impedance matching of the array.Finally,the proposed antenna array is designed and simulated.The results are presented that its impedance bandwidth is about 36.3%at 24.1~34.8 GHz for|S_(11)|<10 dB and axial-ratio(AR)bandwidth is about 20.4%at 24.2~29.7 GHz for AR【3 dB.Besides,a peak gain of 11.1 dBic is simulated over the operating frequency range,which is significantly improved compared to the classic and existing works.
文摘Based on the nonlinearity of the nonlinear optical coupler (NOC) and the amplifying capacity of the backward Raman fiber amplifier (PBRFA), two new optical systems to compress the optical pulse (Optical Pulse Self-Compressor: OPSC) are proposed. Using the expressions describing relationship between input and output intensities from ports of the NOC and the derived expression describing the amplification of the PBRFA, the compressing process of the optical pulse propagating through the OPSC is simulated. The results show that the peak of the optical pulse will be enhanced and the duration of the optical pulse will be reduced significantly. Consequently, the shape of input pulse is completely compressed with the certain efficiency. It means the optical pulse is self-compressed without the external pump pulse by proposing the OPSC.
文摘Ad hoc networks have drawn considerable attentions of researchers for the last few years. Various applications of ad hoc networks have been reported in the literatures including disaster management, battle field, environmental management, healthcare, and smart grid. Ad hoc networks have some limitations namely short operating life, unreliability, scalability, delay, high interference, and scarce resources. In order to overcome these limitations, numerous researches have been carried out. Smart antenna integration is one of them. It has been shown in the literatures that smart antenna can improve network’s capacity, increase network lifetime, reduce delay, and improve scalability by directing antenna radiation pattern in a desired direction. But, producing a desired antenna radiation pattern is not a simple task for resource constraint ad hoc networks. A careful selection of beam forming algorithm is required. In this paper we show that smart antenna system, consisting of circular microstrip antennas and arranged in a linear arrangement, is the most suitable choice for ad hoc network. We compare a number of smart antenna algorithms in this paper under different noisy conditions. We show that the Least Square Constant Modulus (LSCM) and Least Constant Modulus (LCM) algorithms outperform other algorithms in terms of directivity and minimized side lobes.