期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
1
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence multi-layer perceptron(mlp) Discrete element method FEM-DEM Machine learning
下载PDF
Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data
2
作者 Uddagiri Sirisha Parvathaneni Naga Srinivasu +4 位作者 Panguluri Padmavathi Seongki Kim Aruna Pavate Jana Shafi Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2301-2330,共30页
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn... Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process. 展开更多
关键词 Fetal health cardiotocography data deep learning dynamic multi-layer perceptron feature engineering
下载PDF
SSA-MLP模型在岩质边坡稳定性预测中的应用
3
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1795-1803,共9页
岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Sear... 岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Search Algorithm,SSA)改进多层感知器(Multi-Layer Perceptron,MLP)的神经网络模型,并用于边坡稳定性预测、指标敏感性分析及参数反演。其次,将收集的1085组岩质边坡的几何参数和H B准则参数等作为输入变量,极限平衡理论Bishop法求解的安全系数作为输出变量,对SSA MLP模型进行训练学习和性能评估。最后,将该模型运用于25个边坡实例,验证模型的有效性。结果显示,该模型收敛速度快、精度高,为边坡稳定性分析和参数量化提供了一种新思路。 展开更多
关键词 安全工程 边坡稳定性 HOEK-BROWN准则 多层感知器(mlp)神经网络 麻雀搜索算法 参数反演
下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:10
4
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock Harris hawks optimization(HHO) multi-layer perceptron(mlp) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
下载PDF
Identification of low-resistivity-low-contrast pay zones in the feature space with a multi-layer perceptron based on conventional well log data 被引量:2
5
作者 Lun Gao Ran-Hong Xie +2 位作者 Li-Zhi Xiao Shuai Wang Chen-Yu Xu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期570-580,共11页
In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and ca... In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and cannot yield satisfactory results when the causes of LRLC pay zones are complicated.In this study,after analyzing a large number of core samples,main causes of LRLC pay zones in the study area are discerned,which include complex distribution of formation water salinity,high irreducible water saturation due to micropores,and high shale volume.Moreover,different oil testing layers may have different causes of LRLC pay zones.As a result,in addition to the well log data of oil testing layers,well log data of adjacent shale layers are also added to the original dataset as reference data.The densitybased spatial clustering algorithm with noise(DBSCAN)is used to cluster the original dataset into 49 clusters.A new dataset is ultimately projected into a feature space with 49 dimensions.The new dataset and oil testing results are respectively treated as input and output to train the multi-layer perceptron(MLP).A total of 3192 samples are used for stratified 8-fold cross-validation,and the accuracy of the MLP is found to be 85.53%. 展开更多
关键词 Low-resistivity-low-contrast(LRLC)pay zones Conventional well logging Machine learning DBSCAN algorithm multi-layer perceptron
下载PDF
Prediction of Logistics Demand via Least Square Method and Multi-Layer Perceptron 被引量:1
6
作者 WEI Leqin ZHANG Anguo 《Journal of Donghua University(English Edition)》 EI CAS 2020年第6期526-533,共8页
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ... To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy. 展开更多
关键词 logistics demand least square method(LSM) multi-layer perceptron(mlp) PREDICTION strategic planning
下载PDF
基于MLP-Bagging的PCB电热耦合建模方法
7
作者 耿悦 周远国 +2 位作者 任强 梁尚清 杨国卿 《半导体技术》 CAS 北大核心 2024年第10期912-919,共8页
随着三维集成电路性能的提高和复杂程度的增加,印制电路板(PCB)的散热问题日益突出。研究了PCB在电热多物理场相互作用下各部件的发热情况,提出了基于混合激活函数的多层感知机(MLP)-Bagging多物理参数算法。通过使用ReLU和Sigmoid两个... 随着三维集成电路性能的提高和复杂程度的增加,印制电路板(PCB)的散热问题日益突出。研究了PCB在电热多物理场相互作用下各部件的发热情况,提出了基于混合激活函数的多层感知机(MLP)-Bagging多物理参数算法。通过使用ReLU和Sigmoid两个激活函数进行学习和训练,建立了精度更高的MLP模型。之后,结合Bagging算法构建多个并行的MLP模型。所提出的神经网络多物理模型可以快速准确地预测PCB的电热响应。实验结果表明,此方法与有限元法相比,可以节省约97%的计算内存和99%的计算时间,与传统神经网络如随机森林(RF)、长短时记忆(LSTM)网络、MLP相比,该方法表现优良且泛化能力较好,为提高PCB设计效率提供了一种可行方法,为PCB热分析提供了更高效的解决方法。 展开更多
关键词 有限元法(FEM) 人工神经网络(ANN) 多层感知机(mlp)-Bagging 多物理场 电热耦合
下载PDF
Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies 被引量:1
8
作者 Patrice Wira Thien Minh Nguyen 《Journal of Electrical Engineering》 2017年第5期219-230,共12页
This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are... This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems. 展开更多
关键词 Power quality harmonic identification mlp multi-layer perceptron Fourier series active power filtering.
下载PDF
基于WP-MLP神经网络的VoIP自适应抖动缓冲算法
9
作者 李云峰 《中国电子科学研究院学报》 2024年第6期546-551,共6页
为解决抖动缓冲区播放延时和丢包之间的矛盾,实现缓冲区的动态调整使延时和丢包达到最优的平衡,提出一种基于WP-MLP神经网络的自适应抖动缓冲算法。首先,对抖动缓冲区的基本原理进行了分析并给出了丢包率与缓冲延时之间的函数关系;其次... 为解决抖动缓冲区播放延时和丢包之间的矛盾,实现缓冲区的动态调整使延时和丢包达到最优的平衡,提出一种基于WP-MLP神经网络的自适应抖动缓冲算法。首先,对抖动缓冲区的基本原理进行了分析并给出了丢包率与缓冲延时之间的函数关系;其次,提出了WP-MLP神经网络抖动缓冲算法的网络模型并对算法流程进行了分析;最后,通过VoIP网络仿真进行建模对比几种常用抖动缓冲算法,结果表明,本文所提算法能够在播放延时和丢包率之间保持更好的平衡,对缓冲区大小的动态调节表现出更优异的性能。 展开更多
关键词 神经网络 播出延迟 小波包 VOIP 多层感知器 自适应抖动缓冲
下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
10
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
下载PDF
Digital modulation classification using multi-layer perceptron and time-frequency features
11
作者 Yuan Ye Mei Wenbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期249-254,共6页
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio... Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier. 展开更多
关键词 Digital modulation classification Time-frequency feature Time-frequency distribution multi-layer perceptron.
下载PDF
Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron
12
作者 HUANG Tian-min,PEI Zheng (Department of Applied Mathematics, Southwest Jiaotong Universi ty,Chengdu 610031,China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第3期247-257,共11页
The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some prop... The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of prop ositional knowledge base can be implement by the extension multi-layer perceptr on, and by learning, an unknown formula set can be found. 展开更多
关键词 multi-layer perceptron extension multi-layer perce p tron propositional calculus propositional knowledge buse semantic deduction
下载PDF
一种基于MLP的高效高精度三维视线估计方法
13
作者 吴志豪 张德军 +1 位作者 吴亦奇 陈壹林 《计算机工程与科学》 CSCD 北大核心 2023年第11期1982-1990,共9页
随着卷积神经网络(CNN)在计算机视觉领域的广泛应用,以及大量三维视线数据集的公开,基于表观和深度学习相结合的三维视线估计研究受到越来越多的关注。由于CNN结构复杂,这类方法在实时性要求较高的应用场景中还有待进一步改进。近来兴... 随着卷积神经网络(CNN)在计算机视觉领域的广泛应用,以及大量三维视线数据集的公开,基于表观和深度学习相结合的三维视线估计研究受到越来越多的关注。由于CNN结构复杂,这类方法在实时性要求较高的应用场景中还有待进一步改进。近来兴起的研究表明,网络结构更为简单的多层感知机(MLP)模型能够取得与当前最佳CNN、Transformer模型相当的性能。受此启发,提出了一种基于MLP的高效高精度三维视线估计方法,利用MLP模型对双眼、人脸图像提取特征,之后融合推导出三维视线。实验结果表明,对MPIIFaceGaze数据集和EyeDiap数据集中包含的31位不同相貌的受试者,使用提出的方法UM-Net进行视线估计,视线估计精度比肩基于CNN的,并且在视线估计速度上具有明显优势,在实时性要求较高的领域也有较好的应用前景。 展开更多
关键词 三维视线估计 表观 多层感知机 实时性
下载PDF
结合RBM的MLP神经网络输变电工程量评估方法
14
作者 张波 黄江倩 +1 位作者 姜霓裳 王志勇 《高校应用数学学报(A辑)》 北大核心 2023年第2期181-189,共9页
为了解决输变电工程中工程量合理性的智能评估问题,该文提出一种结合RBM(玻尔兹曼机)的MLP(多层感知机)神经网络模型.该模型通过学习可信历史数据中影响因素和工程量的关系,具备了从影响因素预测工程量的能力;再通过对真实值与预测值之... 为了解决输变电工程中工程量合理性的智能评估问题,该文提出一种结合RBM(玻尔兹曼机)的MLP(多层感知机)神经网络模型.该模型通过学习可信历史数据中影响因素和工程量的关系,具备了从影响因素预测工程量的能力;再通过对真实值与预测值之间差异的判断,自动评估目标工程量的合理性.为了能够让模型更好地从复杂的历史数据中学习,从而有效地提高MLP神经网络模型预测的精准度,文中引入玻尔兹曼机对历史数据进行无监督学习,提取可以表征原数据的新的抽象特征.仿真表明,该文方法能够有效推动输变电工程量的智能评估,解决目前专家人工评估中主观因素带来的问题. 展开更多
关键词 输变电工程量 玻尔兹曼机 多层感知机
下载PDF
Automatic Sentimental Analysis by Firefly with Levy and Multilayer Perceptron
15
作者 D.Elangovan V.Subedha 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2797-2808,共12页
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Face... The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy). 展开更多
关键词 Firefly algorithm feature selection feature extraction multi-layer perceptron automatic sentiment analysis
下载PDF
基于锥形追踪和网络分解的NeRF三维重建方法
16
作者 景维鹏 王源锋 李超 《计算机工程》 CAS CSCD 北大核心 2024年第10期334-341,共8页
在计算机视觉领域,神经辐射场(NeRF)是以空间坐标或者时间、相机位姿等其他维度作为输入,通过多层感知机(MLP)网络模拟目标函数,生成颜色、深度等目标标量的过程。NeRF的应用包括对三维场景进行高质量的重建,而其在处理不同分辨率的场... 在计算机视觉领域,神经辐射场(NeRF)是以空间坐标或者时间、相机位姿等其他维度作为输入,通过多层感知机(MLP)网络模拟目标函数,生成颜色、深度等目标标量的过程。NeRF的应用包括对三维场景进行高质量的重建,而其在处理不同分辨率的场景时会产生过度模糊或者伪影的渲染效果,且存在训练耗时较长的问题。为了解决上述问题,提出基于锥形追踪和网络分解的NeRF三维重建方法。使用锥形追踪的方法,为每个像素投射一个圆锥体,并将投射的圆锥体切割成一系列的圆锥台,沿着该圆锥体进行特征化,通过高效渲染抗锯齿的圆锥台来降低模糊或者伪影效果。为了缩短训练时间,使用网络分解的方法,将原始NeRF接收5维数据的神经网络分解为两个网络,有效地缩短训练时间。实验结果表明,在NeRF_Synthetic、LLFF和Multiresolution数据集中,相比于NeRF、F 2-NeRF等方法,所提方法的峰值信噪比(PSNR)提升了14.4%~24.6%,能够重建出更丰富的细节特征,视觉效果更好,且训练时间大幅降低。 展开更多
关键词 神经辐射场 多层感知机 三维重建 神经网络 隐式重建 锥形追踪 网络分解
下载PDF
基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法 被引量:1
17
作者 舒胜文 陈阳阳 +3 位作者 张梓奇 方舒绮 王国彬 曾静岚 《电网技术》 EI CSCD 北大核心 2024年第2期750-759,共10页
利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行... 利用大数据和画像技术对电力变压器运行状态进行准确评价有利于保障电力系统的安全稳定运行。针对电力变压器运行状态传统评价方法存在的评价维度过于单一、主观性较强等不足,提出了一种基于多维能力和知识图谱-多层感知机的变压器运行状态画像构建方法。首先,构建了由绝缘水平、负载能力、抗短路能力、能效等级和调压能力五个能力构成的变压器运行状态画像体系;然后,融合知识图谱(knowledge graph,KG)与多层感知机(multilayer perceptron,MLP),建立了一种变压器运行状态画像分析模型;最后,基于某地区1368台110kV变压器的实际运行数据,开展了变压器运行状态画像的实例分析,并与随机森林(random forest,RF)和支持向量机(support vector machine,SVM)方法的画像分析结果进行对比。研究结果表明,所提方法对变压器运行状态画像的准确率达到96.35%,优于RF算法(准确率89%)和SVM算法(准确率77%),为电力变压器的运行状态评价提供了一种新思路。 展开更多
关键词 电力变压器 运行状态 画像构建 多维能力 知识图谱 多层感知机
下载PDF
非语言信息增强和对比学习的多模态情感分析模型
18
作者 刘佳 宋泓 +2 位作者 陈大鹏 王斌 张增伟 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3372-3381,共10页
因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充... 因具有突出的表征和融合能力,深度学习方法近年来越来越多地被应用于多模态情感分析领域。已有的研究大多利用文字、面部表情、语音语调等多模态信息对人物的情绪进行分析,并主要使用复杂的融合方法。然而,现有模型在长时间序列中未充分考虑情感的动态变化,导致情感分析性能不佳。针对这一问题,该文提出非语言信息增强和对比学习的多模态情感分析网络模型。首先,使用长程文本信息去促使模型学习音频和视频在长时间序列中的动态变化,然后,通过门控机制消除模态间的冗余信息和语义歧义。最后,使用对比学习加强模态间的交互,提升模型的泛化性。实验结果表明,在数据集CMU-MOSI上,该模型将皮尔逊相关系数(Corr)和F1值分别提高了3.7%和2.1%;而在数据集CMU-MOSEI上,该模型将“Corr”和“F1值”分别提高了1.4%和1.1%。因此,该文提出的模型可以有效利用模态间的交互信息,并去除信息冗余。 展开更多
关键词 多模态情感分析 多模态融合 信息增强 多层感知器
下载PDF
三种机器学习模型用于空气质量等级预测的比较研究——以保定市为例
19
作者 刘婕 郝舒欣 +2 位作者 万红燕 刘悦 徐东群 《环境卫生学杂志》 2024年第3期264-269,272,共7页
目的 利用支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和多层感知器(multilayer perceptron, MLP)三种机器学习方法分别构建保定市未来三日空气质量等级预测模型,通过对参数调优和预测结果比较选择三种模型... 目的 利用支持向量机(support vector machine, SVM)、随机森林(random forest, RF)和多层感知器(multilayer perceptron, MLP)三种机器学习方法分别构建保定市未来三日空气质量等级预测模型,通过对参数调优和预测结果比较选择三种模型中的最佳模型。方法 基于保定市2014—2022年的空气污染物日均浓度监测数据和同期气象数据,采用SVM、RF和MLP三种机器学习模型,利用前四日数据为未来三日分别构建了每日的空气质量等级预测模型并评估特征变量的重要性。对模型参数进行调优,采取十折交叉验证法进行验证,通过准确率和AUC等指标来评估模型性能。结果 SVM模型未来三日准确率分别为69.8%、63.5%、62.3%,AUC分别为77.4、70.8、70.7;RF模型未来三日准确率分别为75.9%、68.2%、67.1%,AUC分别为0.84、0.74、0.72;MLP模型未来三日准确率分别为73.2%、66.4%、65.7%,AUC为0.83、0.74、0.73,综合对比RF模型表现最优;空气质量特征变量重要性高于气象因素特征变量。结论 通过对比研究,RF机器学习模型能够相对有效地预测未来一日空气污染等级,并提供空气质量等级预警。 展开更多
关键词 机器学习 空气污染 支持向量机 随机森林 多层感知器
下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
20
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(mlp) 时间卷积网络(TCN) 长短期记忆(LSTM)网络
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部