A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo...Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.展开更多
Cymbidium goeringii is an economically important ornamental plant,and flower color is one of the main features of C.goeringii that contributes to its high economic value.To clarify the molecular mechanisms underlying ...Cymbidium goeringii is an economically important ornamental plant,and flower color is one of the main features of C.goeringii that contributes to its high economic value.To clarify the molecular mechanisms underlying the role of anthocyanins in mediating differences in color among varieties,liquid chromatography–tandem mass spectrometry was used to perform anthocyanin-targeted metabolomics of seven C.goeringii varieties,including‘Jin Qian Yuan’(JQY),‘Jin Xiu Qian Yuan’(JXQY),‘Miao Jiang Su Die’(MJSD),‘Qian Ming Su’(QMS),‘Shi Chan’(SC),and‘Yang Ming Su’(YMS),as well as the C.goeringii.We detected 64 anthocyanins,including cyanidins,delphinidins,malvidins,pelargonidins,peonidins,petunidins,procyanidins,and flavonoids.We identified six shared differentially accumulated metabolites(DAMs),including cyanidin-3-O-rutinoside,delphinidin-3-Osophoroside,pelargonidin-3-O-rutinoside,peonidin-3-O-(6-O-malonyl-beta-D-glucoside),peonidin-3-Osophoroside,and chalcone.Most DAMs were enriched in the anthocyanin biosynthesis pathway.Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed metabolites were significantly enriched in the anthocyanin biosynthesis pathway.Analysis of the content of differentially expressed metabolites indicated that peonidin-3-O-(6-O-malonyl-beta-D-glucoside)was the key metabolite underlying color differences among C.goeringii varieties.Procyanidin B2,pelargonidin-3-O-galactoside,and naringenin might also affect the color formation of JQY and QMS,SC,and MJSD,respectively.The results of this study shed light on the metabolic mechanism underlying flower color differences in C.goeringii at the molecular level.Our findings will aid future studies of the mechanism of flower color regulation in C.goeringii and have implications for the breeding of new varieties.展开更多
Brood parasitic birds lay eggs in the nests of other birds,and the parasitized hosts can reduce the cost of raising unrelated offspring through the recognition of parasitic eggs.Hosts can adopt vision-based cognitive ...Brood parasitic birds lay eggs in the nests of other birds,and the parasitized hosts can reduce the cost of raising unrelated offspring through the recognition of parasitic eggs.Hosts can adopt vision-based cognitive mechanisms to recognize foreign eggs by comparing the colors of foreign and host eggs.However,there is currently no uniform conclusion as to whether this comparison involves the single or multiple threshold decision rules.In this study,we tested both hypotheses by adding model eggs of different colors to the nests of Barn Swallows(Hirundo rustica)of two geographical populations breeding in Hainan and Heilongjiang Provinces in China.Results showed that Barn Swallows rejected more white model eggs(moderate mimetic to their own eggs)and blue model eggs(highly non-mimetic eggs with shorter reflectance spectrum)than red model eggs(highly nonmimetic eggs with longer reflectance spectrum).There was no difference in the rejection rate of model eggs between the two populations of Barn Swallows,and clutch size was not a factor affecting egg recognition.Our results are consistent with the single rejection threshold model.This study provides strong experimental evidence that the color of model eggs can has an important effect on egg recognition in Barn Swallows,opening up new avenues to uncover the evolution of cuckoo egg mimicry and explore the cognitive mechanisms underlying the visual recognition of foreign eggs by hosts.展开更多
Colors are endowed into many different associative meanings by different peoples and countries under the various cultural backgrounds and people make it express testimonial and depreciated meaning. There is not only t...Colors are endowed into many different associative meanings by different peoples and countries under the various cultural backgrounds and people make it express testimonial and depreciated meaning. There is not only the same aspect, but also the differences. Moreover, some factors such as geographical environment, public sentiment custom, thinking mode, religious belief, and national psychology also influence it. Each kind of color is regarded the difference for every nation's person. This article analyzes and investigates the associative meaning of the color in the Chinese and English cultures. And then it will let the reader learn well and more the associative meaning under the different cultural background.展开更多
Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonl...Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonly believed to be the first great novel of the American Civil War,largely because of its vivid and detailed description of the experience of warfare.This paper analyzes the images of color,animal and machine,which convey Crane’s thoughts of war:war is full of chaos,brutality,and confusion,without any romantic elements or heroism.展开更多
This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of ...This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.展开更多
Colored flame compositions have distinctive variety of applications ranging from military signaling,rocket tracking, and illuminating devices. Certain elements and compounds when heated to high temperature are able to...Colored flame compositions have distinctive variety of applications ranging from military signaling,rocket tracking, and illuminating devices. Certain elements and compounds when heated to high temperature are able to emit unique wavelengths in the visible region. This study, reports on the development of novel colored flames that cannot be generated by emitting atomic/molecular species. This was achieved by using chromaticity of basic colored flames. Mixing of high quality primary colored flames including Blue, Yellow, and Red in proper ratio was conducted; any interfering incandescent emission resulted from MgO was eliminated using Al metal fuel. The spectral characteristics in terms of luminous intensity, and color quality were evaluated using digital luxmeter and UV-Vis. spectrometer respectively.High quality mixed colored flames include violet, sweet pink, and marigold were developed. This study shaded the light on the state of the art for the real development of novel colored flame compositions and chromaticity of basic colored flames.展开更多
In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synth...In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades.展开更多
We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with...We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.展开更多
Herbaceous peony(Paeonia lactiflora Pall.) is a famous flower with medicinal values, and its flowers have a number of medicinal constituents, especially flavonoids. In this study, a P. lactiflora cultivar with doubl...Herbaceous peony(Paeonia lactiflora Pall.) is a famous flower with medicinal values, and its flowers have a number of medicinal constituents, especially flavonoids. In this study, a P. lactiflora cultivar with double colors including white outer-petal and yellow inner-petal was used as the experimental materials to perform the qualitative and quantitative analysis of flavonoids by high-performance liquid chromatograph-electrospray ionization-mass spectrometry(HPLC-ESI-MSn) and investigate the expression patterns of flavonoid biosynthetic genes using real-time quantitative polymerase chain reaction(Q-PCR). The results showed that the colors of both petals gradually weakened with flower development. Moreover, one main anthocyanin composition(peonidin 3,5-di-O-glucoside) and five main anthoxanthin compositions(kaempferol di-hexoside, kaempferol-3-O-malonylglucoside-7-O-glucoside, quercetin-3-O-galactoside, luteolin-7-O-glucoside and isorhamnetin-3-O-glucoside) were found in the both, differing significantly in their peak areas only. Total anthocyanin, anthoxanthin and flavonoid contents in white outer-petal and yellow inner-petal gradually decreased during flower development, and were consistently higher in white outer-petal. Furthermore, the expression patterns of nine structural genes in P. lactiflora flavonoid biosynthetic pathway showed that the expression levels of phenylalanine ammonialyase gene(Pl PAL), chalcone synthase gene(PlC HS), flavanone 3-hydroxylase gene(PlF 3H), anthocyanidin synthase gene(PlA NS) and UDP-glucoside: flavonoid 5-O-glucosyltransferase gene(Pl F5GT) in two petals basically presented declined tendencies, and transcription levels of Pl PAL, Pl CHS, Pl ANS, Pl F3 GT and Pl F5 GT also tended to be higher in white outer-petal, which was correlated with their flavonoid contents. These results would lay a solid foundation for the exploration and utilization of flavonoid resources in P. lactiflora flowers.展开更多
Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2...Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia...Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.展开更多
Through the analysis on the earth landscape colors in the beautiful countryside,this paper stated that the color is the most sensitive element when people touch the countryside. The quality of landscape color directly...Through the analysis on the earth landscape colors in the beautiful countryside,this paper stated that the color is the most sensitive element when people touch the countryside. The quality of landscape color directly influences the people's mood when appreciating the beautiful countryside. Taking respecting natural environment,extending the historical context,and conforming to aesthetic taste as the precondition,this paper made optimal design of earth landscape colors in beautiful countryside using the hue unifying method,color contrast method,and color rhyme balancing method.展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f...A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this展开更多
This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is estab...This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is established for the first time according to its unique construction. Two kinds of locking angles are considered under different restraint conditions: the locking angle θ1 controlled by the inserting yarns and the locking angle θ2 controlled by the stitch yarns. It is concluded that the ultimate value of the locking angle θ is the larger one of the two angles.展开更多
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
文摘Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.
基金supported by the Study on Resource Collection and New Variety Breeding of the Guizhou Mountainous Characteristic Flower C.goeringii(QianKeHe[2022]General 107)the Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China,Guizhou Academy of Forestry.
文摘Cymbidium goeringii is an economically important ornamental plant,and flower color is one of the main features of C.goeringii that contributes to its high economic value.To clarify the molecular mechanisms underlying the role of anthocyanins in mediating differences in color among varieties,liquid chromatography–tandem mass spectrometry was used to perform anthocyanin-targeted metabolomics of seven C.goeringii varieties,including‘Jin Qian Yuan’(JQY),‘Jin Xiu Qian Yuan’(JXQY),‘Miao Jiang Su Die’(MJSD),‘Qian Ming Su’(QMS),‘Shi Chan’(SC),and‘Yang Ming Su’(YMS),as well as the C.goeringii.We detected 64 anthocyanins,including cyanidins,delphinidins,malvidins,pelargonidins,peonidins,petunidins,procyanidins,and flavonoids.We identified six shared differentially accumulated metabolites(DAMs),including cyanidin-3-O-rutinoside,delphinidin-3-Osophoroside,pelargonidin-3-O-rutinoside,peonidin-3-O-(6-O-malonyl-beta-D-glucoside),peonidin-3-Osophoroside,and chalcone.Most DAMs were enriched in the anthocyanin biosynthesis pathway.Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed metabolites were significantly enriched in the anthocyanin biosynthesis pathway.Analysis of the content of differentially expressed metabolites indicated that peonidin-3-O-(6-O-malonyl-beta-D-glucoside)was the key metabolite underlying color differences among C.goeringii varieties.Procyanidin B2,pelargonidin-3-O-galactoside,and naringenin might also affect the color formation of JQY and QMS,SC,and MJSD,respectively.The results of this study shed light on the metabolic mechanism underlying flower color differences in C.goeringii at the molecular level.Our findings will aid future studies of the mechanism of flower color regulation in C.goeringii and have implications for the breeding of new varieties.
基金supported by the National Natural Science Foundation of China(Nos.31970427 and 32270526 to W.L.)。
文摘Brood parasitic birds lay eggs in the nests of other birds,and the parasitized hosts can reduce the cost of raising unrelated offspring through the recognition of parasitic eggs.Hosts can adopt vision-based cognitive mechanisms to recognize foreign eggs by comparing the colors of foreign and host eggs.However,there is currently no uniform conclusion as to whether this comparison involves the single or multiple threshold decision rules.In this study,we tested both hypotheses by adding model eggs of different colors to the nests of Barn Swallows(Hirundo rustica)of two geographical populations breeding in Hainan and Heilongjiang Provinces in China.Results showed that Barn Swallows rejected more white model eggs(moderate mimetic to their own eggs)and blue model eggs(highly non-mimetic eggs with shorter reflectance spectrum)than red model eggs(highly nonmimetic eggs with longer reflectance spectrum).There was no difference in the rejection rate of model eggs between the two populations of Barn Swallows,and clutch size was not a factor affecting egg recognition.Our results are consistent with the single rejection threshold model.This study provides strong experimental evidence that the color of model eggs can has an important effect on egg recognition in Barn Swallows,opening up new avenues to uncover the evolution of cuckoo egg mimicry and explore the cognitive mechanisms underlying the visual recognition of foreign eggs by hosts.
文摘Colors are endowed into many different associative meanings by different peoples and countries under the various cultural backgrounds and people make it express testimonial and depreciated meaning. There is not only the same aspect, but also the differences. Moreover, some factors such as geographical environment, public sentiment custom, thinking mode, religious belief, and national psychology also influence it. Each kind of color is regarded the difference for every nation's person. This article analyzes and investigates the associative meaning of the color in the Chinese and English cultures. And then it will let the reader learn well and more the associative meaning under the different cultural background.
文摘Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonly believed to be the first great novel of the American Civil War,largely because of its vivid and detailed description of the experience of warfare.This paper analyzes the images of color,animal and machine,which convey Crane’s thoughts of war:war is full of chaos,brutality,and confusion,without any romantic elements or heroism.
文摘This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.
文摘Colored flame compositions have distinctive variety of applications ranging from military signaling,rocket tracking, and illuminating devices. Certain elements and compounds when heated to high temperature are able to emit unique wavelengths in the visible region. This study, reports on the development of novel colored flames that cannot be generated by emitting atomic/molecular species. This was achieved by using chromaticity of basic colored flames. Mixing of high quality primary colored flames including Blue, Yellow, and Red in proper ratio was conducted; any interfering incandescent emission resulted from MgO was eliminated using Al metal fuel. The spectral characteristics in terms of luminous intensity, and color quality were evaluated using digital luxmeter and UV-Vis. spectrometer respectively.High quality mixed colored flames include violet, sweet pink, and marigold were developed. This study shaded the light on the state of the art for the real development of novel colored flame compositions and chromaticity of basic colored flames.
文摘In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades.
基金the support of the National Basic Research Program(973 Program)of China(Grant No.2011CB610304)the National Natural Science Foundation of China(Grant Nos.11332004 and 11402046)+2 种基金China Postdoctoral Science Foundation(No.2015M571296)the 111 Project(B14013)the CATIC Industrial Production Projects(Grant No.CXY2013DLLG32)
文摘We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.
基金supported by the National Natural Science Foundation of China(31372097 and 31400592)the Major Project of College Natural Science Research of Jiangsu Province,China(13KJA210005)+1 种基金the Opening Project of Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement,China(2014014)the Priority Academic Program Development from Jiangsu Government,China
文摘Herbaceous peony(Paeonia lactiflora Pall.) is a famous flower with medicinal values, and its flowers have a number of medicinal constituents, especially flavonoids. In this study, a P. lactiflora cultivar with double colors including white outer-petal and yellow inner-petal was used as the experimental materials to perform the qualitative and quantitative analysis of flavonoids by high-performance liquid chromatograph-electrospray ionization-mass spectrometry(HPLC-ESI-MSn) and investigate the expression patterns of flavonoid biosynthetic genes using real-time quantitative polymerase chain reaction(Q-PCR). The results showed that the colors of both petals gradually weakened with flower development. Moreover, one main anthocyanin composition(peonidin 3,5-di-O-glucoside) and five main anthoxanthin compositions(kaempferol di-hexoside, kaempferol-3-O-malonylglucoside-7-O-glucoside, quercetin-3-O-galactoside, luteolin-7-O-glucoside and isorhamnetin-3-O-glucoside) were found in the both, differing significantly in their peak areas only. Total anthocyanin, anthoxanthin and flavonoid contents in white outer-petal and yellow inner-petal gradually decreased during flower development, and were consistently higher in white outer-petal. Furthermore, the expression patterns of nine structural genes in P. lactiflora flavonoid biosynthetic pathway showed that the expression levels of phenylalanine ammonialyase gene(Pl PAL), chalcone synthase gene(PlC HS), flavanone 3-hydroxylase gene(PlF 3H), anthocyanidin synthase gene(PlA NS) and UDP-glucoside: flavonoid 5-O-glucosyltransferase gene(Pl F5GT) in two petals basically presented declined tendencies, and transcription levels of Pl PAL, Pl CHS, Pl ANS, Pl F3 GT and Pl F5 GT also tended to be higher in white outer-petal, which was correlated with their flavonoid contents. These results would lay a solid foundation for the exploration and utilization of flavonoid resources in P. lactiflora flowers.
基金financially supported by the National Natural Science Foundation of China(21606065,51372060,and 21676067)Anhui Provincial Natural Science Foundation(1708085QE98)+1 种基金the Fundamental Research Funds for the Central Universities(JZ2017HGTB0198,JZ2018HGBZ0138)the Opening Project of CAS Key Laboratory of Materials for Energy Conversion(KF2018003)
文摘Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金the National Natural Science Foundation of China(No:21703285)。
文摘Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.
基金Supported by the Postgraduate Innovation Fund Project of Jiangxi Normal University in 2016(YC2016-S153)Scientific Research Project of Higher Learning Institutions in Jiangxi Province(JXJG-15-2-29)
文摘Through the analysis on the earth landscape colors in the beautiful countryside,this paper stated that the color is the most sensitive element when people touch the countryside. The quality of landscape color directly influences the people's mood when appreciating the beautiful countryside. Taking respecting natural environment,extending the historical context,and conforming to aesthetic taste as the precondition,this paper made optimal design of earth landscape colors in beautiful countryside using the hue unifying method,color contrast method,and color rhyme balancing method.
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
文摘A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this
文摘This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is established for the first time according to its unique construction. Two kinds of locking angles are considered under different restraint conditions: the locking angle θ1 controlled by the inserting yarns and the locking angle θ2 controlled by the stitch yarns. It is concluded that the ultimate value of the locking angle θ is the larger one of the two angles.