Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to ene...Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to energy principle and dynamic accumulation of casing wear by tool joints, a model is established to calculate the wear area on the inner wall of the casing. The relationship functions between the wear groove depth and area are obtained based on the geometry relationship between the drillstring and the wear section and the assumption that the casing wear groove is crescent-shaped. The change of casing wear groove depth versus drilling footage under different-sized drillstrings is also discussed. A mechanical model is proposed for predicting casing wear location, which is based on the well trajectory and drillstring movement. The casing wear groove depth of a planned well is predicted with inversion of the casing wear factor from the drilled well and necessarily revised to improve the prediction accuracy for differences between the drilled well and the planned well. The method for predicting casing wear in extended-reach drilling is verified through actual case study. The effect of drillstring size on casing wear should be taken into account in casing wear prediction.展开更多
BACKGROUND Fourth degree burns damage the full thickness of the skin and affect underlying tissues.Skin grafting after debridement is often used to cover the wounds of salvageable severe burns.A granulation wound can ...BACKGROUND Fourth degree burns damage the full thickness of the skin and affect underlying tissues.Skin grafting after debridement is often used to cover the wounds of salvageable severe burns.A granulation wound can be formed by drilling the skull to the barrier layer to solve the problem of skull exposure.Low oxygen levels present at high altitudes aggravate ischemia and hypoxia which can negatively impact wound healing.The impaired healing in such cases can be ameliorated by hyperbaric oxygen therapy.CASE SUMMARY We describe a patient who presented with fourth degree burns to the left temporal and facial regions upon admission in December 2018.The periosteum of the skull and the deep fascia of the face were exposed.After the first stage of debridement and skin grafting,the temporal skin did not survive well.Granulation was induced by cranial drilling,and then a local flap was transferred to cover the wound.The left temporal and facial wounds were completely covered and the patient recovered well.CONCLUSION Skin grafting and flap transfer after early debridement to cover the wound and control infection were of great significance.In the later stages of the patient's treatment,survival of the skin graft and skin flap was observed.The second stage repair was performed to achieve successful skin grafting by cranial granulation.Granulation was formed by drilling the skull,and then the wound was closed,which is suitable for cases with skull exposure and wounds with poor blood supply.We consider that hyperbaric oxygen treatment and improving tissue oxygen supply were beneficial in this patient.展开更多
Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,l...Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,low drilling efficiency,and high energy consumption due to the unreasonable tooth arrangement and impact energy selection in drilling process,which affect the application effect of this technology.ABAQUS software was used for numerical simulation of rock breaking behavior under impact load with the single,three,and five teeth arrangement drill bit respectively,to improve the application effect and solve the aforementioned technical problems.Based on the calculated parameters of tooth arrangement,we designed a novel drill bit for hard rocks and provided a theoretical basis for the tooth arrangement of largediameter drill bits.展开更多
This paper examines the feasibility in air drilling of transmitting down-hole signals by using microwaves. Firstly the basic theory of microwave propagation in the drill-pipe or casing was studied, including power los...This paper examines the feasibility in air drilling of transmitting down-hole signals by using microwaves. Firstly the basic theory of microwave propagation in the drill-pipe or casing was studied, including power loss, cutoff wavelength, and dust scattering. Theoretical analysis indicates that the microwave propagation distance in a cb214mm casing can easily reach 5,000 m. When the effect of dust particles is taken into account, the propagation distance decreases to 2,000 m. We conducted both laboratory experiments and field tests in casings commonly used in oil fields. The field tests show that the effective propagation distance of microwave in the casing is about 1,300 m. The experimental results do not match well with theoretical prediction, but are acceptable. In future commercial applications, by applying multiple relay amplifiers, the microwave propagation distance could be long enough for most drilling wells.展开更多
Frictional wear of inner walls of drill pipe and casing is produced by rotational advance of drill pipe in the casing due to the joint effect of drilling fluid, temperature and contact load during drilling, among whic...Frictional wear of inner walls of drill pipe and casing is produced by rotational advance of drill pipe in the casing due to the joint effect of drilling fluid, temperature and contact load during drilling, among which the main wear is on the drill string. With development of drilling technology, deep well, ultradeep well, high angle well, directional well, extended reach well and horizontal well are taking more and more proportion. Meanwhile, the problem of serious frictional wear between drill pipe and casing are becoming more significant due to long time of drilling, high probability of dogleg severity, high contact normal stress between drill pipe and casing etc. Tool sticking may also occur due to large frictional resistance. Therefore, higher requirements are made on the study of how to predict and prevent the wear of drill pipe and casing during drilling. The residual strength of the worn casing is also studied by analysis of the law of drill pipe's effect on the casing wear in this paper.展开更多
Deep shale gas reservoirs being developed by SINOPEC are characterized by significant buried depths, high rock strengths, high temperatures and pressures, multiple layers, low ROPs, prolonged drilling time and prohibi...Deep shale gas reservoirs being developed by SINOPEC are characterized by significant buried depths, high rock strengths, high temperatures and pressures, multiple layers, low ROPs, prolonged drilling time and prohibitoryhigh costs. All of these factors may negatively affect the economic and effective development of shale gas. Under such circumstances, existing drilling techniques for deep shale gas around the world have been reviewed to highlight technical challenges in deep shale gas drilling in China. With consideration to the previous drilling operations of SINOPEC for deep shale gas, technical solutions for deep shale gas drilling have been proposed with regard to the optimization of casing programs, enhanced drilling, trajectory control, high-density oil-based drilling fluid, cementation for deep shale gas development and other aspects. Some of these research findings have been deployed with great successes in Pingqiao, Jiangdong Block in the 2nd Phase of Fuling Project, Dingshan Block and other blocks with deep shale gas development. Among them, Well JY-74-2HF has had a drilling time of only 54.25d, whereas Well JY-187-2HF has a TVD up to 4024.14m. Relevant research results may provide valuable guidance and references for the optimization of drilling programs andthe enhancement ofdrilling ef^ciency for deep shale gas development.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
The first exploration oil well in any oil block consumes in general more time and cost than the other wells in the same block. Evaluating the drilled wells serves to improve the future operations. This paper evaluates...The first exploration oil well in any oil block consumes in general more time and cost than the other wells in the same block. Evaluating the drilled wells serves to improve the future operations. This paper evaluates the drilled surface section through real field data for the first exploration oil well drilled in one of the oil blocks, in Kurdistan north of Iraq. The surface section of the well was drilled with the conventional method to penetrate many different geological formations with tight intervals. Drilling efficiency and the difficulties encountered are discussed and explained using various data sources. All daily drilling reports concerning a specific interval were studied. This includes weight on bit, string rotation, mud pump flow and penetration rate. Evaluation was carried out by analyzing the used controllable drilling parameters with the formations features. Penetration of the Pila Spi formation (Middle Eocene) was the most difficult formation in the drilled section. Microsoft Office 365 Pro Plus used in making graphs and Excel tables. Evaluations showed that the conventional technology used left many negative effects, like increase in None Productive Time NPT, cost and ground water pollution. Simultaneous Casing Drilling method proposed as an alternative method for the future campaign.展开更多
基金support from the national projects (Grant No.: 2009ZX05009-005 and 2010CB226703)
文摘Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to energy principle and dynamic accumulation of casing wear by tool joints, a model is established to calculate the wear area on the inner wall of the casing. The relationship functions between the wear groove depth and area are obtained based on the geometry relationship between the drillstring and the wear section and the assumption that the casing wear groove is crescent-shaped. The change of casing wear groove depth versus drilling footage under different-sized drillstrings is also discussed. A mechanical model is proposed for predicting casing wear location, which is based on the well trajectory and drillstring movement. The casing wear groove depth of a planned well is predicted with inversion of the casing wear factor from the drilled well and necessarily revised to improve the prediction accuracy for differences between the drilled well and the planned well. The method for predicting casing wear in extended-reach drilling is verified through actual case study. The effect of drillstring size on casing wear should be taken into account in casing wear prediction.
文摘BACKGROUND Fourth degree burns damage the full thickness of the skin and affect underlying tissues.Skin grafting after debridement is often used to cover the wounds of salvageable severe burns.A granulation wound can be formed by drilling the skull to the barrier layer to solve the problem of skull exposure.Low oxygen levels present at high altitudes aggravate ischemia and hypoxia which can negatively impact wound healing.The impaired healing in such cases can be ameliorated by hyperbaric oxygen therapy.CASE SUMMARY We describe a patient who presented with fourth degree burns to the left temporal and facial regions upon admission in December 2018.The periosteum of the skull and the deep fascia of the face were exposed.After the first stage of debridement and skin grafting,the temporal skin did not survive well.Granulation was induced by cranial drilling,and then a local flap was transferred to cover the wound.The left temporal and facial wounds were completely covered and the patient recovered well.CONCLUSION Skin grafting and flap transfer after early debridement to cover the wound and control infection were of great significance.In the later stages of the patient's treatment,survival of the skin graft and skin flap was observed.The second stage repair was performed to achieve successful skin grafting by cranial granulation.Granulation was formed by drilling the skull,and then the wound was closed,which is suitable for cases with skull exposure and wounds with poor blood supply.We consider that hyperbaric oxygen treatment and improving tissue oxygen supply were beneficial in this patient.
基金Project of National Key Research and Development of China(No.2018YFC1505303).
文摘Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,low drilling efficiency,and high energy consumption due to the unreasonable tooth arrangement and impact energy selection in drilling process,which affect the application effect of this technology.ABAQUS software was used for numerical simulation of rock breaking behavior under impact load with the single,three,and five teeth arrangement drill bit respectively,to improve the application effect and solve the aforementioned technical problems.Based on the calculated parameters of tooth arrangement,we designed a novel drill bit for hard rocks and provided a theoretical basis for the tooth arrangement of largediameter drill bits.
文摘This paper examines the feasibility in air drilling of transmitting down-hole signals by using microwaves. Firstly the basic theory of microwave propagation in the drill-pipe or casing was studied, including power loss, cutoff wavelength, and dust scattering. Theoretical analysis indicates that the microwave propagation distance in a cb214mm casing can easily reach 5,000 m. When the effect of dust particles is taken into account, the propagation distance decreases to 2,000 m. We conducted both laboratory experiments and field tests in casings commonly used in oil fields. The field tests show that the effective propagation distance of microwave in the casing is about 1,300 m. The experimental results do not match well with theoretical prediction, but are acceptable. In future commercial applications, by applying multiple relay amplifiers, the microwave propagation distance could be long enough for most drilling wells.
文摘Frictional wear of inner walls of drill pipe and casing is produced by rotational advance of drill pipe in the casing due to the joint effect of drilling fluid, temperature and contact load during drilling, among which the main wear is on the drill string. With development of drilling technology, deep well, ultradeep well, high angle well, directional well, extended reach well and horizontal well are taking more and more proportion. Meanwhile, the problem of serious frictional wear between drill pipe and casing are becoming more significant due to long time of drilling, high probability of dogleg severity, high contact normal stress between drill pipe and casing etc. Tool sticking may also occur due to large frictional resistance. Therefore, higher requirements are made on the study of how to predict and prevent the wear of drill pipe and casing during drilling. The residual strength of the worn casing is also studied by analysis of the law of drill pipe's effect on the casing wear in this paper.
文摘Deep shale gas reservoirs being developed by SINOPEC are characterized by significant buried depths, high rock strengths, high temperatures and pressures, multiple layers, low ROPs, prolonged drilling time and prohibitoryhigh costs. All of these factors may negatively affect the economic and effective development of shale gas. Under such circumstances, existing drilling techniques for deep shale gas around the world have been reviewed to highlight technical challenges in deep shale gas drilling in China. With consideration to the previous drilling operations of SINOPEC for deep shale gas, technical solutions for deep shale gas drilling have been proposed with regard to the optimization of casing programs, enhanced drilling, trajectory control, high-density oil-based drilling fluid, cementation for deep shale gas development and other aspects. Some of these research findings have been deployed with great successes in Pingqiao, Jiangdong Block in the 2nd Phase of Fuling Project, Dingshan Block and other blocks with deep shale gas development. Among them, Well JY-74-2HF has had a drilling time of only 54.25d, whereas Well JY-187-2HF has a TVD up to 4024.14m. Relevant research results may provide valuable guidance and references for the optimization of drilling programs andthe enhancement ofdrilling ef^ciency for deep shale gas development.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.
文摘The first exploration oil well in any oil block consumes in general more time and cost than the other wells in the same block. Evaluating the drilled wells serves to improve the future operations. This paper evaluates the drilled surface section through real field data for the first exploration oil well drilled in one of the oil blocks, in Kurdistan north of Iraq. The surface section of the well was drilled with the conventional method to penetrate many different geological formations with tight intervals. Drilling efficiency and the difficulties encountered are discussed and explained using various data sources. All daily drilling reports concerning a specific interval were studied. This includes weight on bit, string rotation, mud pump flow and penetration rate. Evaluation was carried out by analyzing the used controllable drilling parameters with the formations features. Penetration of the Pila Spi formation (Middle Eocene) was the most difficult formation in the drilled section. Microsoft Office 365 Pro Plus used in making graphs and Excel tables. Evaluations showed that the conventional technology used left many negative effects, like increase in None Productive Time NPT, cost and ground water pollution. Simultaneous Casing Drilling method proposed as an alternative method for the future campaign.