The process of explosion venting to air in a cylindrical vent vessel connected to a duct, filling with a stoichiometric methane-oxygen gas mixture, was simulated numerically by using a colocated grid SIMPLE scheme bas...The process of explosion venting to air in a cylindrical vent vessel connected to a duct, filling with a stoichiometric methane-oxygen gas mixture, was simulated numerically by using a colocated grid SIMPLE scheme based on k-epsilon turbulent model and Eddy-dissipation combustion model. The characteristics of the combustible cloud, flame and pressure distribution in the external flow field during venting were analyzed in terms of the predicted results.The results show that the external explosion is generated due to violent turbulent combustion in the high pressure region within the external combustible cloud ignited by a jet flame. And the turbulence and vortex in the external flow field were also discussed in detail. After the jet flame penetrating into the external combustible cloud, the turbulent intensity is greater in the regions with greater average kinetic energy gradient, rather than in the flame front; and the vortex in the external flow field is generated primarily due to the baroclinic effect, which is greater in the regions where the pressure and density gradients are nearly perpendicular.展开更多
Experimental investigations were conducted on the process of combustion and explosion vent in a 200 mm (diame- ter)×400 mm (length) vertical cylindrical vessel. When CH4-air mixture gases were used and the vent d...Experimental investigations were conducted on the process of combustion and explosion vent in a 200 mm (diame- ter)×400 mm (length) vertical cylindrical vessel. When CH4-air mixture gases were used and the vent diameter was 55 mm, conditions of Φ (equivalent ratio)=0.8, Φ=1.0 and Φ=1.3 and two ignition positions (at the cylinder center and bottom) were selected. The venting processes and the correlated factors are discussed in this paper.展开更多
To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion chara...To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.展开更多
To control and reduce the harm of a gas explosion, a new method is proposed for suppressing gas-explosion propagation in a tunnel by using a vacuum chamber. We studied the suppression effect on gas explosions by placi...To control and reduce the harm of a gas explosion, a new method is proposed for suppressing gas-explosion propagation in a tunnel by using a vacuum chamber. We studied the suppression effect on gas explosions by placing a vacuum chamber at dif-ferent positions along the tunnel. The results indicate that: 1) the vacuum chamber can absorb the explosion wave and explosion energy as much as possible at the beginning of the gas explosion, and; 2) when the vacuum chamber is used the closer it is to the ignition source the more significant the suppression effect. In addition, by using the vacuum chamber: 1) the flame propagation velocity decreases from ultrasonic to subsonic; 2) the flame propagation distance is remarkably shortened; 3) the maximum peak value of overpressure (pm) decreases from 0.34 to 0.17 MPa or less, and; 4) the impulse of the blast wave (I) decreases from 20 to 8 kPa·s or less.展开更多
With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures...With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures from being destroyed,but the character of explosion load must be learned firstly by establishing a correct mechanical model to simulate vented gas explo-sions.The explosion process has been studied for many years towards the safety of chemical in-dustry equipments.The key problem of these studies was the equations usually involved some ad-justable parameters that must be evaluated by experimental data,and the procedure of calculation was extremely complicated,so the reliability of these studies was seriously limited.Based on these studies,a simple mathematical model was established in this paper by using energy conservation,mass conservation,gas state equation,adiabatic compression equation and gas venting equation.Explosion load must be estimated by considering the room layout; the rate of pressure rise was then corrected by using a turbulence factor,so the pressure-time curve could be obtained.By using this method,complicated calculation was avoided,while experimental and calculated results fitted fairly well.Some pressure-time curves in a typical rectangular room were calculated to inves-tigate the influences of different ignition locations,gas thickness,concentration,room size and venting area on the explosion pressure.The results indicated that: it was the most dangerous con-dition when being ignited in the geometry centre of the room; the greater the burning velocity,the worse the venting effect; the larger the venting pressure,the higher the peak pressure; the larger the venting area,the lower the peak pressure.展开更多
Due to the influence of many factors,the overpressure-time history load model of vented gas explosions is difficult to describe and is not conducive to further structural design.Based on vented gas explosion test data...Due to the influence of many factors,the overpressure-time history load model of vented gas explosions is difficult to describe and is not conducive to further structural design.Based on vented gas explosion test data,this paper obtains three typical overpressure-time history curves and puts forward a new semi-empirical model-double hump model that considers gas concentration and venting pressure,and gives a formula for peak pressure and overpressure-time history model.The scientificity of the model is then verified by the total impulse in the load.The model is able directly reflect the load characteristics,provide reference for calculating key parameters of a vented gas explosion and provide information on the structural response under the load.The model thereby has the potential to help reduce the impact of gas explosion disasters.展开更多
文摘The process of explosion venting to air in a cylindrical vent vessel connected to a duct, filling with a stoichiometric methane-oxygen gas mixture, was simulated numerically by using a colocated grid SIMPLE scheme based on k-epsilon turbulent model and Eddy-dissipation combustion model. The characteristics of the combustible cloud, flame and pressure distribution in the external flow field during venting were analyzed in terms of the predicted results.The results show that the external explosion is generated due to violent turbulent combustion in the high pressure region within the external combustible cloud ignited by a jet flame. And the turbulence and vortex in the external flow field were also discussed in detail. After the jet flame penetrating into the external combustible cloud, the turbulent intensity is greater in the regions with greater average kinetic energy gradient, rather than in the flame front; and the vortex in the external flow field is generated primarily due to the baroclinic effect, which is greater in the regions where the pressure and density gradients are nearly perpendicular.
基金Project (No. 19832030) supported by the National Natural Science Foundation of China
文摘Experimental investigations were conducted on the process of combustion and explosion vent in a 200 mm (diame- ter)×400 mm (length) vertical cylindrical vessel. When CH4-air mixture gases were used and the vent diameter was 55 mm, conditions of Φ (equivalent ratio)=0.8, Φ=1.0 and Φ=1.3 and two ignition positions (at the cylinder center and bottom) were selected. The venting processes and the correlated factors are discussed in this paper.
基金Project(51674193)supported by the National Natural Science Foundation of ChinaProject(2019-JLM-9)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2019-M-663780)supported by the Postdoctoral Science Foundation,China。
文摘To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.
基金Projects 50534090 and 50674090 supported by the National Natural Science Foundation of China2006BAK03B05 by the National "Eleventh Five" Scien-tific and Technology Key Program of China+1 种基金2005CB221503 by the National Basic Research Program of China2007A001 by the Scientific Research Foundation of China University of Mining & Technology
文摘To control and reduce the harm of a gas explosion, a new method is proposed for suppressing gas-explosion propagation in a tunnel by using a vacuum chamber. We studied the suppression effect on gas explosions by placing a vacuum chamber at dif-ferent positions along the tunnel. The results indicate that: 1) the vacuum chamber can absorb the explosion wave and explosion energy as much as possible at the beginning of the gas explosion, and; 2) when the vacuum chamber is used the closer it is to the ignition source the more significant the suppression effect. In addition, by using the vacuum chamber: 1) the flame propagation velocity decreases from ultrasonic to subsonic; 2) the flame propagation distance is remarkably shortened; 3) the maximum peak value of overpressure (pm) decreases from 0.34 to 0.17 MPa or less, and; 4) the impulse of the blast wave (I) decreases from 20 to 8 kPa·s or less.
文摘With the increase of domestic gas consumption in cities and towns in China,gas explo-sion accidents happened rather frequently,and many structures were damaged greatly.Rational physical design could protect structures from being destroyed,but the character of explosion load must be learned firstly by establishing a correct mechanical model to simulate vented gas explo-sions.The explosion process has been studied for many years towards the safety of chemical in-dustry equipments.The key problem of these studies was the equations usually involved some ad-justable parameters that must be evaluated by experimental data,and the procedure of calculation was extremely complicated,so the reliability of these studies was seriously limited.Based on these studies,a simple mathematical model was established in this paper by using energy conservation,mass conservation,gas state equation,adiabatic compression equation and gas venting equation.Explosion load must be estimated by considering the room layout; the rate of pressure rise was then corrected by using a turbulence factor,so the pressure-time curve could be obtained.By using this method,complicated calculation was avoided,while experimental and calculated results fitted fairly well.Some pressure-time curves in a typical rectangular room were calculated to inves-tigate the influences of different ignition locations,gas thickness,concentration,room size and venting area on the explosion pressure.The results indicated that: it was the most dangerous con-dition when being ignited in the geometry centre of the room; the greater the burning velocity,the worse the venting effect; the larger the venting pressure,the higher the peak pressure; the larger the venting area,the lower the peak pressure.
基金The authors gratefully acknowledge the financial support from Natural Science Foundation of Jiangsu Province of China(Grant No.BK20180081)National Key R&D Program of China(Great No.2020YFB2103300)National Basic Research Program of China(973 Program)(Grant No.2015CB058000).
文摘Due to the influence of many factors,the overpressure-time history load model of vented gas explosions is difficult to describe and is not conducive to further structural design.Based on vented gas explosion test data,this paper obtains three typical overpressure-time history curves and puts forward a new semi-empirical model-double hump model that considers gas concentration and venting pressure,and gives a formula for peak pressure and overpressure-time history model.The scientificity of the model is then verified by the total impulse in the load.The model is able directly reflect the load characteristics,provide reference for calculating key parameters of a vented gas explosion and provide information on the structural response under the load.The model thereby has the potential to help reduce the impact of gas explosion disasters.