期刊文献+
共找到13,347篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
1
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Comparison among the UECM Model, and the Composite Model in Forecasting Malaysian Imports
2
作者 Mohamed A. H. Milad Hanan Moh. B. Duzan 《Open Journal of Statistics》 2024年第2期163-178,共16页
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f... For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting. 展开更多
关键词 Composite model UECM ARIMA forecasting MALAYSIA
下载PDF
A Hybrid Model Evaluation Based on PCA Regression Schemes Applied to Seasonal Precipitation Forecast
3
作者 Pedro M. González-Jardines Aleida Rosquete-Estévez +1 位作者 Maibys Sierra-Lorenzo Arnoldo Bezanilla-Morlot 《Atmospheric and Climate Sciences》 2024年第3期328-353,共26页
Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water r... Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water resource planning, therefore, obtaining seasonal prediction models that allow these variations to be characterized in detail, it’s a concern, specially for island states. This research proposes the construction of statistical-dynamic models based on PCA regression methods. It is used as predictand the monthly precipitation accumulated, while the predictors (6) are extracted from the ECMWF-SEAS5 ensemble mean forecasts with a lag of one month with respect to the target month. In the construction of the models, two sequential training schemes are evaluated, obtaining that only the shorter preserves the seasonal characteristics of the predictand. The evaluation metrics used, where cell-point and dichotomous methodologies are combined, suggest that the predictors related to sea surface temperatures do not adequately represent the seasonal variability of the predictand, however, others such as the temperature at 850 hPa and the Outgoing Longwave Radiation are represented with a good approximation regardless of the model chosen. In this sense, the models built with the nearest neighbor methodology were the most efficient. Using the individual models with the best results, an ensemble is built that allows improving the individual skill of the models selected as members by correcting the underestimation of precipitation in the dynamic model during the wet season, although problems of overestimation persist for thresholds lower than 50 mm. 展开更多
关键词 Seasonal forecast Principal Component Regression Statistical-Dynamic models
下载PDF
A data assimilation-based forecast model of outer radiation belt electron fluxes 被引量:2
4
作者 Yuan Lei Xing Cao +3 位作者 BinBin Ni Song Fu TaoRong Luo XiaoYu Wang 《Earth and Planetary Physics》 CAS CSCD 2023年第6期620-630,共11页
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ... Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications. 展开更多
关键词 Earth’s outer radiation belt data assimilation electron flux forecast model performance evaluation
下载PDF
Statistical Time Series Forecasting Models for Pandemic Prediction
5
作者 Ahmed ElShafee Walid El-Shafai +2 位作者 Abeer D.Algarni Naglaa F.Soliman Moustafa H.Aly 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期349-374,共26页
COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be... COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions. 展开更多
关键词 forecasting COVID-19 predictive models medical viruses mathematical model market research DISEASES
下载PDF
A model‑free approach to do long‑term volatility forecasting and its variants
6
作者 Kejin Wu Sayar Karmakar 《Financial Innovation》 2023年第1期1595-1632,共38页
Volatility forecasting is important in financial econometrics and is mainly based on the application of various GARCH-type models.However,it is difficult to choose a specific GARCH model that works uniformly well acro... Volatility forecasting is important in financial econometrics and is mainly based on the application of various GARCH-type models.However,it is difficult to choose a specific GARCH model that works uniformly well across datasets,and the traditional methods are unstable when dealing with highly volatile or short-sized datasets.The newly pro-posed normalizing and variance stabilizing(NoVaS)method is a more robust and accu-rate prediction technique that can help with such datasets.This model-free method was originally developed by taking advantage of an inverse transformation based on the frame of the ARCH model.In this study,we conduct extensive empirical and simu-lation analyses to investigate whether it provides higher-quality long-term volatility forecasting than standard GARCH models.Specifically,we found this advantage to be more prominent with short and volatile data.Next,we propose a variant of the NoVaS method that possesses a more complete form and generally outperforms the current state-of-the-art NoVaS method.The uniformly superior performance of NoVaS-type methods encourages their wide application in volatility forecasting.Our analyses also highlight the flexibility of the NoVaS idea that allows the exploration of other model structures to improve existing models or solve specific prediction problems. 展开更多
关键词 ARCH-GARCH model free Aggregated forecasting
下载PDF
Impacts of Increasing Model Resolutions and Shortening Forecast Lead Times on QPFs in South China During the Rainy Season
7
作者 张旭斌 李静珊 +4 位作者 罗亚丽 宝兴华 陈靖扬 肖辉 文秋实 《Journal of Tropical Meteorology》 SCIE 2023年第3期277-300,共24页
This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons... This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts. 展开更多
关键词 south China QPF model resolution forecast lead time
下载PDF
Flood Forecasting and Warning System: A Survey of Models and Their Applications in West Africa
8
作者 Mohamed Fofana Julien Adounkpe +5 位作者 Sam-Quarco Dotse Hamadoun Bokar Andrew Manoba Limantol Jean Hounkpe Isaac Larbi Adama Toure 《American Journal of Climate Change》 2023年第1期1-20,共20页
Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events aft... Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events after Asia and Europe. Eastern Africa is the most hit in Africa. However, Africa continent is at the early stage in term of flood forecasting models development and implementation. Very few hydrological models for flood forecasting are available and implemented in Africa for the flood mitigation. And for the majority of the cases, they need to be improved because of the time evolution. Flash flood in Bamako (Mali) has been putting both human life and the economy in jeopardy. Studying this phenomenon, as to propose applicable solutions for its alleviation in Bamako is a great concern. Therefore, it is of upmost importance to know the existing scientific works related to this situation in Mali and elsewhere. The main aim was to point out the various solutions implemented by various local and international institutions, in order to fight against the flood events. Two types of methods are used for the flood events adaptation: the structural and non-structural methods. The structural methods are essentially based on the implementation of the structures like the dams, dykes, levees, etc. The problem of these methods is that they may reduce the volume of water that will inundate the area but are not efficient for the prediction of the coming floods and cannot alert the population with any lead time in advance. The non-structural methods are the one allowing to perform the prediction with acceptable lead time. They used the hydrological rainfall-runoff models and are the widely methods used for the flood adaptation. This review is more accentuated on the various types non-structural methods and their application in African countries in general and West African countries in particular with their strengths and weaknesses. Hydrologiska Byråns Vattenbalansavdelning (HBV), Hydrologic Engineer Center Hydrologic Model System (HEC-HMS) and Soil and Water Assessment Tool (SWAT) are the hydrological models that are the most widely used in West Africa for the purpose of flood forecasting. The easily way of calibration and the weak number of input data make these models appropriate for the West Africa region where the data are scarce and often with bad quality. These models when implemented and applied, can predict the coming floods, allow the population to adapt and mitigate the flood events and reduce considerably the impacts of floods especially in terms of loss of life. 展开更多
关键词 Flood forecasting Hydrological models Climate Change WEST
下载PDF
Analysis of Spatial and Temporal Variation and Forecast Model of Sandstorm Weather in Ulanqab City
9
作者 Dan ZHANG 《Meteorological and Environmental Research》 CAS 2023年第1期48-49,共2页
Based on the data of sandstorm at 11 stations in Ulanqab City from 1990 to 2021,the spatial and temporal variation characteristics of sand-storm weather were analyzed firstly,and then the conceptual models of cold fro... Based on the data of sandstorm at 11 stations in Ulanqab City from 1990 to 2021,the spatial and temporal variation characteristics of sand-storm weather were analyzed firstly,and then the conceptual models of cold front and Mongolian cyclone sandstorm were obtained by analyzing sandstorm cases.Finally,the forecast points of the two types of sandstorm weather were given to provide some scientific basis and reference for the prediction of local sandstorm weather in the future. 展开更多
关键词 SANDSTORM Conceptual model forecast point
下载PDF
Model for Short - Term Forecast on Vehicles in Bitola Town
10
作者 Vaska Atanasova 《Journal of Civil Engineering and Architecture》 2023年第3期123-128,共6页
The contemporary lifestyle leads to rapid increase of number of motorized traffic participants thus,there is a need of traffic planning,which requires forecast.Considering the fact that contemporary software packages ... The contemporary lifestyle leads to rapid increase of number of motorized traffic participants thus,there is a need of traffic planning,which requires forecast.Considering the fact that contemporary software packages exist,based on modern technology and long-term experience it is decided to rely on the software package PTV Vision-VISUM,for forecast in the traffic in Bitola town.Synthetic model is designed by this software package,modeling is done on existing situation,model’s calibration and in this article output results are presented from forecast on vehicles in Bitola town,for next 5 years. 展开更多
关键词 model forecast Bitola
下载PDF
SeisGuard: A Software Platform to Establish Automatically an Earthquake Forecasting Model
11
作者 Xiliang Liu Yajing Gao Mei Li 《Open Journal of Earthquake Research》 2023年第4期177-197,共21页
SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an ... SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an earthquake forecasting model. The main function of this system is to analyze and process the deformation, fluid, electromagnetic and other geophysical field observing data from ground-based observation, as well as space-based observation. Combined station and earthquake distributions, geological structure and other information, this system can provide a basic software platform for earthquake forecasting research based on spatiotemporal fusion. The hierarchical station tree for data sifting and the interaction mode have been innovatively developed in this SeisGuard system to improve users’ working efficiency. The data storage framework designed according to the characteristics of different time series can unify the interfaces of different data sources, provide the support of data flow, simplify the management and usage of data, and provide foundation for analysis of big data. The final aim of this development is to establish an effective earthquake forecasting model combined all available information from ground-based observations to space-based observations. 展开更多
关键词 SeisGuard Platform Geophysical Observing Data Electromagnetic Emission Time Series Database Spatiotemporal Fusion Earthquake forecasting model
下载PDF
A NOVEL STOCHASTIC HEPATITIS B VIRUS EPIDEMIC MODEL WITH SECOND-ORDER MULTIPLICATIVE α-STABLE NOISE AND REAL DATA
12
作者 Anwarud DIN Yassine SABBAR 吴鹏 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期752-788,共37页
This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the vi... This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling. 展开更多
关键词 HBV model nonlinear perturbation probabilistic bifurcation long-run forecast numerical simulation
下载PDF
Parameter-driven Level of Detail Derivation Method for Semantic Building Facade Model
13
作者 WANG Yuefeng JIAO Wei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期57-75,共19页
The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu... The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated. 展开更多
关键词 3D building model multi-level of Detail(LoD) semantic facade model CITYGML 3D GIS
下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
14
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
下载PDF
Research on the Dynamic Volatility Relationship between Chinese and U.S. Stock Markets Based on the DCC-GARCH Model under the Background of the COVID-19 Pandemic
15
作者 Simin Wu Yan Liang Weixun Li 《Journal of Applied Mathematics and Physics》 2024年第9期3066-3080,共15页
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t... This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education. 展开更多
关键词 DCC-GARCH model Stock Market Linkage COVID-19 Market Volatility forecasting Analysis
下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model
16
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 Autoregressive integrated moving average(ARIMA)model Long Short-Term Memory(LSTM)network forecasting Stock market
下载PDF
Synoptic Verification of Precipitation Forecast of Three NWP Models from May to August of 2008 in Liaoning Province 被引量:5
17
作者 崔锦 周小珊 +1 位作者 陈力强 张爱忠 《Meteorological and Environmental Research》 CAS 2010年第8期7-11,20,共6页
In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products fo... In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products for forecasters,the synoptic verifications of their 12 h accumulated precipitation forecasts of 3 numerical modes from May to August in 2008 were made on the basis of different systems impacting weather in Liaoning Province.The time limitations were 24,36,48 and 60 h.The verified contents included 6 aspects such as intensity and position of precipitation center,intensity,location,scope and moving velocity of precipitation main body.The results showed that the three models had good forecasting capability for precipitation in Liaoning Province,but the cupacity of each model was obviously different. 展开更多
关键词 Numerical model Precipitation forecast Synoptic meteorology verification China
下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
18
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
下载PDF
River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1
19
作者 李致家 周轶 马振坤 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN.... Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 展开更多
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor
下载PDF
Application of discrete choice model in trip mode structure forecast:a case study of Bengbu
20
作者 任刚 周竹萍 张浩然 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期83-87,共5页
In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics a... In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure. 展开更多
关键词 trip mode split trip mode structure discrete choice model forecasting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部