To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., id...A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.展开更多
This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Da...This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model.展开更多
The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglom...The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglomerations. Focusing on the Beijing-Tianjin-Hebei(BTH) urban agglomeration, this study constructs an urban resilience evaluation system based on four subsystems: economy, society, infrastructure, and ecology. It uses the entropy method to measure the urban resilience of the BTH urban agglomeration from 2000 to 2018.Theil index, standard deviation ellipse, and gray prediction model GM(1,1) methods are used to examine the spatio-temporal evolution and dynamic simulation of urban resilience in this urban agglomeration. Our results show that the comprehensive evaluation index for urban resilience in the BTH urban agglomeration followed a steady upward trend from 2000 to 2018,with an average annual growth rate of 6.72%. There are significant differences in each subsystem’s contribution to urban resilience;overall, economic resilience is the main factor affecting urban resilience, with an average annual growth rate of 8.06%. Spatial differences in urban resilience in the BTH urban agglomeration have decreased from 2000 to 2018, showing the typical characteristic of being greater in the central core area and lower in the surrounding non-core areas. The level of urban resilience in the BTH urban agglomeration is forecast to continue increasing over the next ten years. However, there are still considerable differences between the cities. Policy factors will play a positive role in promoting the resilience level. Based on the evaluation results, corresponding policy recommendations are put forwar to provide scientific data support and a theoretical basis for the resilience construction of the BTH urban agglomeration.展开更多
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
基金Supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.
基金support by the National Natural Science Foundation of China(Grant Nos.52108377,52090084,and 51938008).
文摘This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model.
基金Innovation Research Group Project of National Natural Science Foundation of China,No.42121001。
文摘The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglomerations. Focusing on the Beijing-Tianjin-Hebei(BTH) urban agglomeration, this study constructs an urban resilience evaluation system based on four subsystems: economy, society, infrastructure, and ecology. It uses the entropy method to measure the urban resilience of the BTH urban agglomeration from 2000 to 2018.Theil index, standard deviation ellipse, and gray prediction model GM(1,1) methods are used to examine the spatio-temporal evolution and dynamic simulation of urban resilience in this urban agglomeration. Our results show that the comprehensive evaluation index for urban resilience in the BTH urban agglomeration followed a steady upward trend from 2000 to 2018,with an average annual growth rate of 6.72%. There are significant differences in each subsystem’s contribution to urban resilience;overall, economic resilience is the main factor affecting urban resilience, with an average annual growth rate of 8.06%. Spatial differences in urban resilience in the BTH urban agglomeration have decreased from 2000 to 2018, showing the typical characteristic of being greater in the central core area and lower in the surrounding non-core areas. The level of urban resilience in the BTH urban agglomeration is forecast to continue increasing over the next ten years. However, there are still considerable differences between the cities. Policy factors will play a positive role in promoting the resilience level. Based on the evaluation results, corresponding policy recommendations are put forwar to provide scientific data support and a theoretical basis for the resilience construction of the BTH urban agglomeration.