Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient...The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.展开更多
The conflation of linguistic competencies with ideological and political educational paradigms presents unique opportunities and challenges for English language teaching(ELT)in our increasingly interconnected world.Th...The conflation of linguistic competencies with ideological and political educational paradigms presents unique opportunities and challenges for English language teaching(ELT)in our increasingly interconnected world.This research seeks to address the role of cross-cultural critical thinking within the landscape of English pedagogy,framed by the imperatives of ideological and political education.Employing a multi-method approach,including thematic content analysis and action research,the study proposes a pedagogical model designed to integrate transcultural discourse and ideologically reflective practices into the conventional ELT curriculum.This paper argues for a reimagined approach to teaching English that encourages students to engage with diverse cultural perspectives and develop a nuanced understanding of global issues.展开更多
As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores th...As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores the transformation of this discourse paradigm through the lens of empowerment,analyzing its distinct characteristics,potential pathways,and effective strategies.This paper begins by reviewing the concept of empowerment and examining the current research landscape surrounding the discourse paradigm in educational supervision.Subsequently,we conduct a comparative analysis of the“control”and“empowerment”paradigms,highlighting their essential differences.This analysis illuminates the key characteristics of an empowerment-oriented approach to educational supervision,particularly its emphasis on dialogue,collaboration,participation,and,crucially,empowerment itself.Ultimately,this research advocates for a shift in educational supervision towards an empowerment-oriented discourse system.This entails a multi-pronged approach:transforming ingrained beliefs,embracing renewed pedagogical concepts,fostering methodological innovation,and optimizing existing mechanisms and strategies within educational supervision.These changes are proposed to facilitate the more effective alignment of educational supervision with the pursuit of high-quality education.展开更多
This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to the...This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to theoretical models,then to computational simulation and data intensive science,and finally introduces intelligent computing as the core of the fifth paradigm.Intelligent computing enhances the ability to understand,predict,and automate scientific discoveries of complex systems through technologies such as deep learning and machine learning.The article further analyzes the applications of intelligent computing in fields such as bioinformatics,astronomy,climate science,materials science,and medical image analysis,demonstrating its practical utility in solving scientific problems and promoting knowledge development.Finally,the article predicts that intelligent computing will play a more critical role in future scientific research,promoting interdisciplinary integration,open science,and collaboration,providing new solutions for solving complex problems.展开更多
Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of ...Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.展开更多
Interpreting the Universal Declaration of Human Rights from political,juridical and philosophical perspectives is es-sential for promoting the guiding principles of the Declaration,build-ing consensus on human rights,...Interpreting the Universal Declaration of Human Rights from political,juridical and philosophical perspectives is es-sential for promoting the guiding principles of the Declaration,build-ing consensus on human rights,and advancing human rights practice in the new historical context.To conduct an academic,systematic in-terpretation of the Declaration that conforms to the trends of the times and answers the fundamental questions of the world,it is necessary to find a new research paradigm.The common values of humanity,namely peace,development,equity,justice,democracy and freedom,put forward by Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,provide the most explanatory and penetrating scientific paradigm for reaching the issue.This paper an-alyzes and reflects on the views,value foundation and principled(con-tractual)consensus of human rights in the Declaration,and narrates and foresees the far-reaching significance of the three global initia-tives(namely,the Global Development Initiative,the Global Security Initiative,and the Global Civilization Initiative)with the common val-ues of humanity as the soul in advancing the modernization of global human rights governance and building a new form of human rights civilization.展开更多
From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovati...From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovation,but has not received sufficient attention.In this paper,we give an overview and perspective on machine learning paradigms.First,we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective.Accordingly,we give an overview on three basic and twelve extended learning paradigms,such as Ensemble Learning,Transfer Learning,etc.,with figures in unified style.We further analyze three advanced paradigms,i.e.,AlphaGo,AlphaFold and ChatGPT.Second,to enable more efficient and effective scientific discovery,we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science(DeSci)movement based on decentralized autonomous organization(DAO).To this end,we design the Hanoi framework,which integrates human factors,parallel intelligence based on a combination of artificial systems and the natural world,and the DAO to inspire AI innovations.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform...We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.展开更多
An often unrecognized problem is the geology and glacial history paradigm’s inability to explain topographic map drainage system and erosional landform evidence, which means geology research studies rarely address th...An often unrecognized problem is the geology and glacial history paradigm’s inability to explain topographic map drainage system and erosional landform evidence, which means geology research studies rarely address that type of topographic map evidence. The problem originated in the late 19<sup>th</sup> century with William Morris Davis who is sometimes called the father of geomorphology and was one of the first geologists to interpret what in the late 19<sup>th</sup> century were newly available topographic maps. An 1889 Davis paper describes selected drainage system evidence observed on an advance copy of the 1890 Doylestown (Pennsylvania) topographic map and an 1892 Ward paper written after discussions with Davis describes additional selected drainage system evidence seen on the same map. Both papers fail to mention the majority of the Doylestown map’s drainage system features including most barbed tributaries, asymmetric drainage divides, and through (dry) valleys crossing major drainage divides. Had Davis used all of the map’s drainage system and erosional landform evidence he should have recognized the map evidence shows headward erosion of an east-oriented Neshaminy Creek valley captured southwest-oriented streams which headward erosion of the south-oriented Delaware River valley and its east-oriented tributary Tohickon Creek valley had beheaded. Consciously or unconsciously, Davis chose not to alert future investigators that Doylestown topographic map evidence did not support his yet-to-be-published Pennsylvania and New Jersey erosion history interpretations and instead Davis proceeded to develop and promote erosion history interpretations which the map evidence did not support.展开更多
In the 16th and 17th century,Britain was constantly strained by sporadic plagues,famines,fires and political conflicts.As a response in literature,Shakespeare has constructed an annular locomotion paradigm in Fletcher...In the 16th and 17th century,Britain was constantly strained by sporadic plagues,famines,fires and political conflicts.As a response in literature,Shakespeare has constructed an annular locomotion paradigm in Fletcher and his collaboration work Cardenio.Be more specific,the locomotion routes can be exemplified in Möbius strip,a rhizome system,a reciprocating juxtaposition between the foreground and the background,either of which finally runs to an annular schema.The annular in narration corresponds with The Globe theater and the round world.Shakespeare may express his expectation and prospect for the uprising bourgeoise and the newly found world by the resurrection theme in literature.展开更多
Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in th...Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.展开更多
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
文摘The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.
文摘The conflation of linguistic competencies with ideological and political educational paradigms presents unique opportunities and challenges for English language teaching(ELT)in our increasingly interconnected world.This research seeks to address the role of cross-cultural critical thinking within the landscape of English pedagogy,framed by the imperatives of ideological and political education.Employing a multi-method approach,including thematic content analysis and action research,the study proposes a pedagogical model designed to integrate transcultural discourse and ideologically reflective practices into the conventional ELT curriculum.This paper argues for a reimagined approach to teaching English that encourages students to engage with diverse cultural perspectives and develop a nuanced understanding of global issues.
文摘As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores the transformation of this discourse paradigm through the lens of empowerment,analyzing its distinct characteristics,potential pathways,and effective strategies.This paper begins by reviewing the concept of empowerment and examining the current research landscape surrounding the discourse paradigm in educational supervision.Subsequently,we conduct a comparative analysis of the“control”and“empowerment”paradigms,highlighting their essential differences.This analysis illuminates the key characteristics of an empowerment-oriented approach to educational supervision,particularly its emphasis on dialogue,collaboration,participation,and,crucially,empowerment itself.Ultimately,this research advocates for a shift in educational supervision towards an empowerment-oriented discourse system.This entails a multi-pronged approach:transforming ingrained beliefs,embracing renewed pedagogical concepts,fostering methodological innovation,and optimizing existing mechanisms and strategies within educational supervision.These changes are proposed to facilitate the more effective alignment of educational supervision with the pursuit of high-quality education.
文摘This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to theoretical models,then to computational simulation and data intensive science,and finally introduces intelligent computing as the core of the fifth paradigm.Intelligent computing enhances the ability to understand,predict,and automate scientific discoveries of complex systems through technologies such as deep learning and machine learning.The article further analyzes the applications of intelligent computing in fields such as bioinformatics,astronomy,climate science,materials science,and medical image analysis,demonstrating its practical utility in solving scientific problems and promoting knowledge development.Finally,the article predicts that intelligent computing will play a more critical role in future scientific research,promoting interdisciplinary integration,open science,and collaboration,providing new solutions for solving complex problems.
基金Achievements of Sichuan Fine Arts Institute Education and Teaching Reform Research Project“Construction of Multi-Level Strategic System for Cultivating Cultural Industry Management Talents in Colleges and Universities”(2024jg10)。
文摘Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.
基金the major special project of the Ministry of Education for Philosophy and Social Science Research, “Research on the Basic Theory and Core Essence of Xi Jinping Thought on the Rule of Law” (Project Approv-al Number 2022JZDZ001).
文摘Interpreting the Universal Declaration of Human Rights from political,juridical and philosophical perspectives is es-sential for promoting the guiding principles of the Declaration,build-ing consensus on human rights,and advancing human rights practice in the new historical context.To conduct an academic,systematic in-terpretation of the Declaration that conforms to the trends of the times and answers the fundamental questions of the world,it is necessary to find a new research paradigm.The common values of humanity,namely peace,development,equity,justice,democracy and freedom,put forward by Xi Jinping,general secretary of the Communist Party of China(CPC)Central Committee,provide the most explanatory and penetrating scientific paradigm for reaching the issue.This paper an-alyzes and reflects on the views,value foundation and principled(con-tractual)consensus of human rights in the Declaration,and narrates and foresees the far-reaching significance of the three global initia-tives(namely,the Global Development Initiative,the Global Security Initiative,and the Global Civilization Initiative)with the common val-ues of humanity as the soul in advancing the modernization of global human rights governance and building a new form of human rights civilization.
基金This work was supported by the National Key Research and Development Program of China(2020YFB2104001)the National Natural Science Foundation of China(62271485,61903363,U1811463)Open Project of the State Key Laboratory for Management and Control of Complex Systems(20220117).
文摘From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovation,but has not received sufficient attention.In this paper,we give an overview and perspective on machine learning paradigms.First,we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective.Accordingly,we give an overview on three basic and twelve extended learning paradigms,such as Ensemble Learning,Transfer Learning,etc.,with figures in unified style.We further analyze three advanced paradigms,i.e.,AlphaGo,AlphaFold and ChatGPT.Second,to enable more efficient and effective scientific discovery,we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science(DeSci)movement based on decentralized autonomous organization(DAO).To this end,we design the Hanoi framework,which integrates human factors,parallel intelligence based on a combination of artificial systems and the natural world,and the DAO to inspire AI innovations.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the National Key R&D Program of China(Grants No.2018YFA0306600)+5 种基金the National Natural Science Foundation of China(Grant Nos.11974330 and 92165206)the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH004)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0302200 and 2021ZD0301603)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000)the Hefei Comprehensive National Science Centerthe Fundamental Research Funds for the Central Universities。
文摘We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.
文摘An often unrecognized problem is the geology and glacial history paradigm’s inability to explain topographic map drainage system and erosional landform evidence, which means geology research studies rarely address that type of topographic map evidence. The problem originated in the late 19<sup>th</sup> century with William Morris Davis who is sometimes called the father of geomorphology and was one of the first geologists to interpret what in the late 19<sup>th</sup> century were newly available topographic maps. An 1889 Davis paper describes selected drainage system evidence observed on an advance copy of the 1890 Doylestown (Pennsylvania) topographic map and an 1892 Ward paper written after discussions with Davis describes additional selected drainage system evidence seen on the same map. Both papers fail to mention the majority of the Doylestown map’s drainage system features including most barbed tributaries, asymmetric drainage divides, and through (dry) valleys crossing major drainage divides. Had Davis used all of the map’s drainage system and erosional landform evidence he should have recognized the map evidence shows headward erosion of an east-oriented Neshaminy Creek valley captured southwest-oriented streams which headward erosion of the south-oriented Delaware River valley and its east-oriented tributary Tohickon Creek valley had beheaded. Consciously or unconsciously, Davis chose not to alert future investigators that Doylestown topographic map evidence did not support his yet-to-be-published Pennsylvania and New Jersey erosion history interpretations and instead Davis proceeded to develop and promote erosion history interpretations which the map evidence did not support.
基金Chongqing Social Science Fund Project“The Ethical Topology of Shakespeare’s Histories”(2020WYZX07).
文摘In the 16th and 17th century,Britain was constantly strained by sporadic plagues,famines,fires and political conflicts.As a response in literature,Shakespeare has constructed an annular locomotion paradigm in Fletcher and his collaboration work Cardenio.Be more specific,the locomotion routes can be exemplified in Möbius strip,a rhizome system,a reciprocating juxtaposition between the foreground and the background,either of which finally runs to an annular schema.The annular in narration corresponds with The Globe theater and the round world.Shakespeare may express his expectation and prospect for the uprising bourgeoise and the newly found world by the resurrection theme in literature.
文摘Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.