In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled IN...The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled INS. In the paper, a discrete error recursive model was obtained by studying the applied SINS error model of ballistic missile, and the discrete Kalman filtering simulation based on the model was carried out. The simulated results show that the model can depict the SINS error exactly and provide the advantages for research on integrated guidance and improved hit accuracy.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filte...A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filter is used to estimate the variation of展开更多
In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the co...In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the convergence of this algorithm is theoretically discussed, and a sufficient condition for the convergence criterion of the orthogonal procedure is given. According to this condition, the recursive algorithm is convergent to model wavelet A- = (1, α1,..., αq).展开更多
The time-dependence bilinear mixed-regression deformation model and time-dependence bilinear dynamic system deformation model are established for deformation observation series. According to the multi- level recursive...The time-dependence bilinear mixed-regression deformation model and time-dependence bilinear dynamic system deformation model are established for deformation observation series. According to the multi- level recursive method, the time-dependence parameters are first traced and predicted, and then the dynamic system states. Due to the method considering time-dependence of deformation and having stronger adaptability to time-dependence system, it can improve forecast’s precision. It is very effective for data processing of nonlinear dynamic deformation monitoring to make multi-step forecasting.展开更多
Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed t...Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.展开更多
Calculations of cooling rate by CO2 15 μm band in the earth's upper mesosphere and lower thermosphere be-come very difficult because of the non-LTE. This is primarily due to the nonlinear vibration-vibrational (V...Calculations of cooling rate by CO2 15 μm band in the earth's upper mesosphere and lower thermosphere be-come very difficult because of the non-LTE. This is primarily due to the nonlinear vibration-vibrational (VV) transition processes between CO, molecules in different states. This paper suggests that the non-LTE source function be parameterized as a linear combination of two limiting source functions. One limiting source function neglects the VV transitions while the other limiting source function assumes VV transitions being dominant. These two limiting source functions can be derived by linear models. The parameterization schemes proposed here can be applied to the general circulation models including those non-LTE regions.展开更多
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during highe...Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting.Moreover,because the target is not always mentioned in the text,most methods have ignored target information.In order to solve these problems,we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory(LSTM)and the excellent extracting performance of convolutional neural networks(CNNs).The method can obtain multi-level features that consider both local and global features.We also introduce attention mechanisms to magnify target information-related features.Furthermore,we employ sparse coding to remove noise to obtain characteristic features.Performance was improved by using sparse coding on the basis of attention employment and feature extraction.We evaluate our approach on the SemEval-2016Task 6-A public dataset,achieving a performance that exceeds the benchmark and those of participating teams.展开更多
Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engin...Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-展开更多
Objective To evaluate the effect of the aluminum hydroxide (Al-OH) adjuvant on the 2009 pandemic influenza A/H1N1 (pH1N1) vaccine. Methods In a multicenter, double-blind, randomized, placebo-controlled trial, part...Objective To evaluate the effect of the aluminum hydroxide (Al-OH) adjuvant on the 2009 pandemic influenza A/H1N1 (pH1N1) vaccine. Methods In a multicenter, double-blind, randomized, placebo-controlled trial, participants received two doses of split-virion formulation containing 15 ug hemagglutinin antigen, with or without aluminum hydroxide (N-OH). We classified the participants into six age categories (〉61 years, 41-60 years, 19-40 years, 13-18 years, 8-12 years, and 3-7 years) and obtained four blood samples from each participant on days 0, 21, 35, and 42 following the first dose of immunization. We assessed vaccine immunogenicity by measuring the geometric mean titer (GMT) of hemagglutination inhibiting antibody. We used a two-level model to evaluate the fixed effect of aluminum Al-OH and other factors, accounting for repeated measures. Results The predictions of repeated measurement on GMTs of formulations with or without Al-OH, were 80.35 and 112.72, respectively. Al-OH significantly reduced immunogenicity after controlling for time post immunization, age-group and gender. Conclusion The Al-OH adjuvant does not increase but actually reduces the immunogenicity of the split-virion pH1N1 vaccine.展开更多
Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis...Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis of multibody systems. ReDySim delves upon the decoupled natural orthogonal complement approach originally developed for serial-chain manipulators. In comparison to the commercially available software, dynamic analyses in ReDySim can be performed without creating solid model. The input parameters are specified in MATLAB environment. ReDySim has capability to incorporate any control algorithm with utmost ease. In this work, the capabilities of ReDySim for solving open-loop and closed-loop systems are shown by examples of robotic gripper, KUKA KR5 industrial manipulator and four-bar mechanism. ReDySim can be downloaded for free from http://www.redysim.co.nr and can be used almost instantly.展开更多
The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu...The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.展开更多
This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transm...This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model the estima...A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model the estimation of the OFDM time-frequency response is turned into the optimization of some time-invariant model parameters. A new algorithm based on the expectation-maximization (EM) method is proposed to obtain the maximum-likelihood (ML) estimation of the polynomial model parameters over the 2-D observed data. At the same time, in order to reduce the complexity and avoid the computation instability, a novel recursive approach (RPEMTO) is given to calculate the values of the parameters. It is further shown that this 2-D polynomial EM-based algorithm for time-varying OFDM (PEMTO) can be simplified mathematically to handle the one-dimensional sequential estimation. Simulations illustrate that the proposed algorithms achieve a lower bit error rate (BER) than other blind algorithms.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
文摘The strap-down inertial navigation system (SINS) error of ballistic missile is generated by the mutual influence of gyroscope and accelerometer, and the recursive model is completely different from that of gimbaled INS. In the paper, a discrete error recursive model was obtained by studying the applied SINS error model of ballistic missile, and the discrete Kalman filtering simulation based on the model was carried out. The simulated results show that the model can depict the SINS error exactly and provide the advantages for research on integrated guidance and improved hit accuracy.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
文摘A new recursive algorithm of multi variable time varying AR model is proposed. By changing the form of AR model, the parameter estimation can be regarded as state estimation of state equations. Then the Kalman filter is used to estimate the variation of
基金Project supported by Scientific Research Fund of Chongqing Municipal Education Commission (kj0604-16)
文摘In this article, the problem on the estimation of the convolution model parameters is considered. The recursive algorithm for estimating model parameters is introduced from the orthogonal procedure of the data, the convergence of this algorithm is theoretically discussed, and a sufficient condition for the convergence criterion of the orthogonal procedure is given. According to this condition, the recursive algorithm is convergent to model wavelet A- = (1, α1,..., αq).
文摘The time-dependence bilinear mixed-regression deformation model and time-dependence bilinear dynamic system deformation model are established for deformation observation series. According to the multi- level recursive method, the time-dependence parameters are first traced and predicted, and then the dynamic system states. Due to the method considering time-dependence of deformation and having stronger adaptability to time-dependence system, it can improve forecast’s precision. It is very effective for data processing of nonlinear dynamic deformation monitoring to make multi-step forecasting.
文摘Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.
文摘Calculations of cooling rate by CO2 15 μm band in the earth's upper mesosphere and lower thermosphere be-come very difficult because of the non-LTE. This is primarily due to the nonlinear vibration-vibrational (VV) transition processes between CO, molecules in different states. This paper suggests that the non-LTE source function be parameterized as a linear combination of two limiting source functions. One limiting source function neglects the VV transitions while the other limiting source function assumes VV transitions being dominant. These two limiting source functions can be derived by linear models. The parameterization schemes proposed here can be applied to the general circulation models including those non-LTE regions.
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
基金This work is supported by the Fundamental Research Funds for the Central Universities(Grant No.2572019BH03).
文摘Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting.Moreover,because the target is not always mentioned in the text,most methods have ignored target information.In order to solve these problems,we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory(LSTM)and the excellent extracting performance of convolutional neural networks(CNNs).The method can obtain multi-level features that consider both local and global features.We also introduce attention mechanisms to magnify target information-related features.Furthermore,we employ sparse coding to remove noise to obtain characteristic features.Performance was improved by using sparse coding on the basis of attention employment and feature extraction.We evaluate our approach on the SemEval-2016Task 6-A public dataset,achieving a performance that exceeds the benchmark and those of participating teams.
基金Research Grant Council of Hong Kong (GRF Project nos PolyU5331 /07E,PolyU5352 /08E)a grant from Ministry of Sciences and Technology,China (No 2006BAI22B00)
文摘Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-
基金supported by the Infectious Disease Prevention and Control Major Research plan from the Ministry of Science and Technology of China-the Platform of Construction of Clinical Trial of Vaccine. (Project number 2009ZX0004-806)
文摘Objective To evaluate the effect of the aluminum hydroxide (Al-OH) adjuvant on the 2009 pandemic influenza A/H1N1 (pH1N1) vaccine. Methods In a multicenter, double-blind, randomized, placebo-controlled trial, participants received two doses of split-virion formulation containing 15 ug hemagglutinin antigen, with or without aluminum hydroxide (N-OH). We classified the participants into six age categories (〉61 years, 41-60 years, 19-40 years, 13-18 years, 8-12 years, and 3-7 years) and obtained four blood samples from each participant on days 0, 21, 35, and 42 following the first dose of immunization. We assessed vaccine immunogenicity by measuring the geometric mean titer (GMT) of hemagglutination inhibiting antibody. We used a two-level model to evaluate the fixed effect of aluminum Al-OH and other factors, accounting for repeated measures. Results The predictions of repeated measurement on GMTs of formulations with or without Al-OH, were 80.35 and 112.72, respectively. Al-OH significantly reduced immunogenicity after controlling for time post immunization, age-group and gender. Conclusion The Al-OH adjuvant does not increase but actually reduces the immunogenicity of the split-virion pH1N1 vaccine.
文摘Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recur- sive solver for dynamic analysis of multibody systems. ReDySim delves upon the decoupled natural orthogonal complement approach originally developed for serial-chain manipulators. In comparison to the commercially available software, dynamic analyses in ReDySim can be performed without creating solid model. The input parameters are specified in MATLAB environment. ReDySim has capability to incorporate any control algorithm with utmost ease. In this work, the capabilities of ReDySim for solving open-loop and closed-loop systems are shown by examples of robotic gripper, KUKA KR5 industrial manipulator and four-bar mechanism. ReDySim can be downloaded for free from http://www.redysim.co.nr and can be used almost instantly.
基金National Natural Science of China(No.42201463)Guangxi Natural Science Foundation(No.2023GXNSFBA026350)+1 种基金Special Fund of Guangxi Science and Technology Base and Talent(Nos.Guike AD22035158,Guike AD23026167)Guangxi Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0056).
文摘The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.
文摘This paper presents a novel observer model that integrates quantum mechanics, relativity, idealism, and the simulation hypothesis to explain the quantum nature of the universe. The model posits a central server transmitting multi-media frames to create observer-dependent realities. Key aspects include deriving frame rates, defining quantum reality, and establishing hierarchical observer structures. The model’s impact on quantum information theory and philosophical interpretations of reality are examined, with detailed discussions on information loss and recursive frame transmission in the appendices.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
基金The National Natural Science Foundation of China(No60472026)
文摘A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model the estimation of the OFDM time-frequency response is turned into the optimization of some time-invariant model parameters. A new algorithm based on the expectation-maximization (EM) method is proposed to obtain the maximum-likelihood (ML) estimation of the polynomial model parameters over the 2-D observed data. At the same time, in order to reduce the complexity and avoid the computation instability, a novel recursive approach (RPEMTO) is given to calculate the values of the parameters. It is further shown that this 2-D polynomial EM-based algorithm for time-varying OFDM (PEMTO) can be simplified mathematically to handle the one-dimensional sequential estimation. Simulations illustrate that the proposed algorithms achieve a lower bit error rate (BER) than other blind algorithms.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.