Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructu...Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the an...In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the analysis of panicle morphology,the geometrical structure models of panicle spikelet,axis and branch were constructed firstly.Based on that,an interactive panicle L-system model was developed by using substructure algorithm to optimize panicle geometrical models with the similar structure.Simulation results showed that the interactive L-system panicle model based on substructure algorithm could fast construct panicle morphological structure in reality.In addition,this method had the well reference value for other plants model research.展开更多
The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,consid...The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
In the strengthened layer of stainless steel after shot peening,there are a great amount of deformation microtwins which may act as structural strengthening factor and prevent the gradual relaxation of surface residua...In the strengthened layer of stainless steel after shot peening,there are a great amount of deformation microtwins which may act as structural strengthening factor and prevent the gradual relaxation of surface residual stress during fatigue,so as to keep its rather high level of bending fatigue strength.However,in the strengthened surface layer of low carbon steel, dislocation cell structure is so unstalbe during fatigue that its surface residual stress relaxation cannot be retarded.Therefore,the bending fatigue strength of the low carbon steel can not be improred by shot peening.展开更多
The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic ...The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.展开更多
A numerical analysis using a finite element program was performed on three structures: hot mix asphalt (HMA) reinforced trackbed (RACS-1), HMA directly supported trackbed (RACS-2), and traditional Portland Ceme...A numerical analysis using a finite element program was performed on three structures: hot mix asphalt (HMA) reinforced trackbed (RACS-1), HMA directly supported trackbed (RACS-2), and traditional Portland Cement Concrete (PCC) slab track (SlabTrack). Although the comprehensive dynamic responses of RACS-1 were similar with SlabTrack, HMA layer can positively affect the stress distributions. In particular, the horizontal stresses indicate that the resilience of RACS-1 was improved relative to SlabTrack. In addition, HMA reinforced substructure has the capacity to recover the residual vertical deformation. The effective depth for weakening dynamic loadings is mainly from 0 to 2 m, this being especially true at 0.5 m. The results from the analysis show that HMA is a suitable material for the railway substructure to enhance resilient performance, improve the stress distribution, weaken dynamic loading, and lower the vibration, especially at the effective depth of 2 m. The HMA constructed at the top of the stone subbase layer allows the vertical modulus a smooth transition. In terms of the comprehensive dynamic behaviors, RACS-1 is better than SlabTrack, while the results for RACS-2 are inconclusive and require further research.展开更多
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested su...This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.展开更多
In this paper,a new method for dealing with substructure chain is presented.Here,a substructure chain means a structure consisting of a number of identical substructures connected in series.This method is parallel to ...In this paper,a new method for dealing with substructure chain is presented.Here,a substructure chain means a structure consisting of a number of identical substructures connected in series.This method is parallel to the expansion method in the structural analysis according to the transverse section.The method of shift invariance and that of initial parameter and transfer matrix,their mutual-relation and com- bined use,as well as the analysis of the eigenproblem on the transverse section,and the expansion method based on the eigenvectors are described in this paper.展开更多
The aim of this study is to investigate the biological effects of ion beams on pollen. Pollen grains of Cedrus deodara were implanted with 30 keV nitrogen ion beams at doses ranging from 1 × 10^15 ions/cm^2 to 15...The aim of this study is to investigate the biological effects of ion beams on pollen. Pollen grains of Cedrus deodara were implanted with 30 keV nitrogen ion beams at doses ranging from 1 × 10^15 ions/cm^2 to 15 × 10^15 ions/cm^2. The effects of N^+ implantation on the pollen exine substructure were examined using an atomic force microscope (AFM), and the structure and morphology of pollen and pollen tubes were observed using a laser scanning confocal microscope (LSCM). AFM observations distinctly revealed the erosion of the pollen exine caused by N^+ implantation in the micrometer to nanometer range. Typical results showed that the erosion degree was linearly proportional to the ion dose. Pollen germination experiments in vitro indicated that N^+ implantation within a certain dose range increased the rate of pollen germination. The main abnormal phenomena in pollen tubes were also analyzed. Our results suggest that low energy ion implantation with suitable energy and dosage can be used to break the pollen wall to induce a transfer of exogenous DNA into the pollen without any damage to the cytoplasm and nuclei of the pollen. The present study suggests that a combination of the method of ion-beam-induced gene transfer and the pollen-tube pathway method (PTPW) would be a new plant transformation method.展开更多
Peridynamics(PD)is a widely used theory to simulate discontinuities,but its application in real-world structural problems is somewhat limited due to the relatively low-efficiency.The numerical substructure method(NSM)...Peridynamics(PD)is a widely used theory to simulate discontinuities,but its application in real-world structural problems is somewhat limited due to the relatively low-efficiency.The numerical substructure method(NSM)presented by the authors and co-workers provides an efficient approach for modeling structures with local nonlinearities,which is usually restricted in problems of continuum mechanics.In this paper,an approach is presented to couple the PD theory with the NSM for modeling structures with local discontinuities,taking advantage of the powerful capability of the PD for discontinuities simulation and high computational efficiency of the NSM.The structure is simulated using liner elastic finite element(FE)model while the local cracking regions are isolated and simulated using a PD substructure model.A force corrector calculated from the PD model is applied on the FE model to consider the effect of discontinuities.The PD is integrated in the substructure model using interface elements with embedded PD nodes.The equations of motions of both the NSM system and the PD substructure are solved using the central difference method.Three examples of two-dimensional(2D)concrete cantilever beams under the concentrated force are investigated to verify the proposed coupling approach.展开更多
The objective of the investigation is to evaluate the influence of the Zener-Hollomon parameter on substructure and texture evolution in iron-containing wrought aluminium alloys (type AA8011). Methods applied are X-ra...The objective of the investigation is to evaluate the influence of the Zener-Hollomon parameter on substructure and texture evolution in iron-containing wrought aluminium alloys (type AA8011). Methods applied are X-ray texture analysis, electron backscatter diffraction (EBSD) and optical microscopy. The results show a serious impact of the Zener-Hollomon parameter on cube texture evolution during the thermomechanical treatment in iron-containing aluminium alloys. An increase in the Zener-Hollomon parameter reduces the survivability of cube texture during hot deformation and reinforces particle-stimulated nucleation (PSN) during the annealing process. However, thermomechanical treatment at low temperatures leads to active precipitation and as a result fine-dispersed participles tend to block all nuclei except for those producing large cube-oriented grains. It is concluded that in iron-containing wrought aluminium alloys, the general correlation between the Zener-Hollomon parameter and subgrain size is similar to that observed in 3xxx series alloys and can be described by the specific set of equations derived.展开更多
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the lab...An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.展开更多
Combining the advantages of numerical simulation with experimental testing,real-time dynamic substructure(RTDS)testing provides a new experimental method for the investigation of engineered structures.However,not all ...Combining the advantages of numerical simulation with experimental testing,real-time dynamic substructure(RTDS)testing provides a new experimental method for the investigation of engineered structures.However,not all unmodeled parts can be physically tested,as testing is often limited by the capacity of the test facility.Model updating is a good option to improve the modeling accuracy for numerical substructures in RTDS.In this study,a model updating method is introduced,which has great performance in describing this nonlinearity.In order to determine the optimal parameters in this model,an Unscented Kalman Filter(UKF)-based algorithm was applied to extract the knowledge contained in the sensors data.All the parameters that need to be identified are listed as the extended state variables,and the identification was achieved via the step-by-step state prediction and state update process.Effectiveness of the proposed method was verified through a group of experimental data,and results showed good agreement.Furthermore,the proposed method was compared with the Extended Kalman Filter(EKF)-based method,and better accuracy was easily found.The proposed parameter identification method has great applicability for structural objects with nonlinear behaviors and could be extended to research in other engineering fields.展开更多
In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut...In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.展开更多
A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ES...A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.展开更多
The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an ...The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.展开更多
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo...Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.32371280 and T2350011)。
文摘Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金Supported by National Natural Science Foundation of China(60802040)Youth Fund in Southwest University of Science and Technology(10zx3106)~~
文摘In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the analysis of panicle morphology,the geometrical structure models of panicle spikelet,axis and branch were constructed firstly.Based on that,an interactive panicle L-system model was developed by using substructure algorithm to optimize panicle geometrical models with the similar structure.Simulation results showed that the interactive L-system panicle model based on substructure algorithm could fast construct panicle morphological structure in reality.In addition,this method had the well reference value for other plants model research.
文摘The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
文摘In the strengthened layer of stainless steel after shot peening,there are a great amount of deformation microtwins which may act as structural strengthening factor and prevent the gradual relaxation of surface residual stress during fatigue,so as to keep its rather high level of bending fatigue strength.However,in the strengthened surface layer of low carbon steel, dislocation cell structure is so unstalbe during fatigue that its surface residual stress relaxation cannot be retarded.Therefore,the bending fatigue strength of the low carbon steel can not be improred by shot peening.
基金supported by the Natural Science Foundation of Gansu Province(No.ZS001-A22-046-C).
文摘The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.
文摘A numerical analysis using a finite element program was performed on three structures: hot mix asphalt (HMA) reinforced trackbed (RACS-1), HMA directly supported trackbed (RACS-2), and traditional Portland Cement Concrete (PCC) slab track (SlabTrack). Although the comprehensive dynamic responses of RACS-1 were similar with SlabTrack, HMA layer can positively affect the stress distributions. In particular, the horizontal stresses indicate that the resilience of RACS-1 was improved relative to SlabTrack. In addition, HMA reinforced substructure has the capacity to recover the residual vertical deformation. The effective depth for weakening dynamic loadings is mainly from 0 to 2 m, this being especially true at 0.5 m. The results from the analysis show that HMA is a suitable material for the railway substructure to enhance resilient performance, improve the stress distribution, weaken dynamic loading, and lower the vibration, especially at the effective depth of 2 m. The HMA constructed at the top of the stone subbase layer allows the vertical modulus a smooth transition. In terms of the comprehensive dynamic behaviors, RACS-1 is better than SlabTrack, while the results for RACS-2 are inconclusive and require further research.
基金Public Benefit Research Foundation under Grant No.201108006Natural Science Foundation under Grant No.51161120360+2 种基金Heilongjiang Overseas Funding under Grant No.LC201002 of ChinaGrant-in-Aid for Scientific Research(Basic Research Category A,19206060)Japan Society for the Promotion of Science
文摘This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.
基金Project supported by National Natural Science Foundation of China.
文摘In this paper,a new method for dealing with substructure chain is presented.Here,a substructure chain means a structure consisting of a number of identical substructures connected in series.This method is parallel to the expansion method in the structural analysis according to the transverse section.The method of shift invariance and that of initial parameter and transfer matrix,their mutual-relation and com- bined use,as well as the analysis of the eigenproblem on the transverse section,and the expansion method based on the eigenvectors are described in this paper.
文摘The aim of this study is to investigate the biological effects of ion beams on pollen. Pollen grains of Cedrus deodara were implanted with 30 keV nitrogen ion beams at doses ranging from 1 × 10^15 ions/cm^2 to 15 × 10^15 ions/cm^2. The effects of N^+ implantation on the pollen exine substructure were examined using an atomic force microscope (AFM), and the structure and morphology of pollen and pollen tubes were observed using a laser scanning confocal microscope (LSCM). AFM observations distinctly revealed the erosion of the pollen exine caused by N^+ implantation in the micrometer to nanometer range. Typical results showed that the erosion degree was linearly proportional to the ion dose. Pollen germination experiments in vitro indicated that N^+ implantation within a certain dose range increased the rate of pollen germination. The main abnormal phenomena in pollen tubes were also analyzed. Our results suggest that low energy ion implantation with suitable energy and dosage can be used to break the pollen wall to induce a transfer of exogenous DNA into the pollen without any damage to the cytoplasm and nuclei of the pollen. The present study suggests that a combination of the method of ion-beam-induced gene transfer and the pollen-tube pathway method (PTPW) would be a new plant transformation method.
基金Financial support by the National Key Research and Development program of China under Grant No.2016YFC0701106the National Natural Science Foundation of China under grants No.51578473the program of China Scholarship Council(CSC,No.201606060083)are gratefully acknowledged.
文摘Peridynamics(PD)is a widely used theory to simulate discontinuities,but its application in real-world structural problems is somewhat limited due to the relatively low-efficiency.The numerical substructure method(NSM)presented by the authors and co-workers provides an efficient approach for modeling structures with local nonlinearities,which is usually restricted in problems of continuum mechanics.In this paper,an approach is presented to couple the PD theory with the NSM for modeling structures with local discontinuities,taking advantage of the powerful capability of the PD for discontinuities simulation and high computational efficiency of the NSM.The structure is simulated using liner elastic finite element(FE)model while the local cracking regions are isolated and simulated using a PD substructure model.A force corrector calculated from the PD model is applied on the FE model to consider the effect of discontinuities.The PD is integrated in the substructure model using interface elements with embedded PD nodes.The equations of motions of both the NSM system and the PD substructure are solved using the central difference method.Three examples of two-dimensional(2D)concrete cantilever beams under the concentrated force are investigated to verify the proposed coupling approach.
基金funded by a grant of the Russian Science Foundation (Project 18-79-10099)
文摘The objective of the investigation is to evaluate the influence of the Zener-Hollomon parameter on substructure and texture evolution in iron-containing wrought aluminium alloys (type AA8011). Methods applied are X-ray texture analysis, electron backscatter diffraction (EBSD) and optical microscopy. The results show a serious impact of the Zener-Hollomon parameter on cube texture evolution during the thermomechanical treatment in iron-containing aluminium alloys. An increase in the Zener-Hollomon parameter reduces the survivability of cube texture during hot deformation and reinforces particle-stimulated nucleation (PSN) during the annealing process. However, thermomechanical treatment at low temperatures leads to active precipitation and as a result fine-dispersed participles tend to block all nuclei except for those producing large cube-oriented grains. It is concluded that in iron-containing wrought aluminium alloys, the general correlation between the Zener-Hollomon parameter and subgrain size is similar to that observed in 3xxx series alloys and can be described by the specific set of equations derived.
基金State Key Research Project in 13th Five-Year under Grant No.2016YFC0701901the Beijing Science and Technology Program under Grant No.Z161100001216015the Natural Science Foundation of China under Grants Nos.51422809 and 51778342
文摘An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
基金National Natural Science Foundation of China under Grant Nos.61903009,51978016 and 61673002Beijing Municipal Education Commission under Grant No.KM201810011005。
文摘Combining the advantages of numerical simulation with experimental testing,real-time dynamic substructure(RTDS)testing provides a new experimental method for the investigation of engineered structures.However,not all unmodeled parts can be physically tested,as testing is often limited by the capacity of the test facility.Model updating is a good option to improve the modeling accuracy for numerical substructures in RTDS.In this study,a model updating method is introduced,which has great performance in describing this nonlinearity.In order to determine the optimal parameters in this model,an Unscented Kalman Filter(UKF)-based algorithm was applied to extract the knowledge contained in the sensors data.All the parameters that need to be identified are listed as the extended state variables,and the identification was achieved via the step-by-step state prediction and state update process.Effectiveness of the proposed method was verified through a group of experimental data,and results showed good agreement.Furthermore,the proposed method was compared with the Extended Kalman Filter(EKF)-based method,and better accuracy was easily found.The proposed parameter identification method has great applicability for structural objects with nonlinear behaviors and could be extended to research in other engineering fields.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52008404,U1934217 and 11790283)Science and Technology Research and Development Program Project of China Railway Group Limited(Major Special Project,No.2020-Special-02)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.
基金Projects(50574091,50774084) supported by the National Natural Science Foundation of China
文摘A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.
文摘The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52008404)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.