Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some ...Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.展开更多
This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural de...This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.展开更多
The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strat...The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.展开更多
Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge d...Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.展开更多
China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconne...China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconnected through bridges,but constructing highway bridges through complex terrains or across valleys and mountain gullies presents significant challenges,requiring an increase in the height of bridge piers.These bridge piers generally reach tens or even hundreds of meters in height.Furthermore,the construction of these high-pier bridges is becoming increasingly widespread.Not only do they pose greater construction challenges,but they also have higher requirements for seismic resistance.This article primarily analyzes the characteristics of high-pier bridges and proposes seismic design schemes,calculation methods,and design strategies to enhance the construction quality of high-pier bridges.展开更多
In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project...In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project as an example,and analyses the overall selection design of such highway bridges,including the basic overview of the project,the basic selection principle of mega highway bridge project structure and its design strategy,etc.,to provide scientific reference for its selection design.展开更多
This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge struct...This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge structure.The purpose of this paper is to provide robust support for enhancing the design quality of these bridges and ensuring their efficacy in real-world applications.展开更多
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial f...As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.展开更多
Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection ac...Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acti...Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake.展开更多
Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge de...Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge design,and the main conclusions are as follows:The whole unit adopts the supporting system of tower pier consolidation and tower-beam separation,and each pier is provided with seismic mitigation and isolation bearing;shaped-steel reinforced concrete bridge tower is adopted to bring into full play the tensile performance of steel and the compressive performance of concrete,and avoid the construction challenges of setting up multi-layer and multi-stirrup reinforcement while improving the bearing capacity of section;a new type of double-side and bi-directional anti-skid anchorage device is adopted for the cable saddle of wire divider pipe in order to withstand the unbalanced cable force,and verify the reliability of the anti-skid anchorage device by solid model test;and large-segment cantilever pouring design is adopted for the main girder with a maximum segment length of 8 m to effectively shorten the construction period of the bridge.展开更多
With the advancement of the economy,the construction of roads and bridges has assumed a crucial role in the development of China’s highway transportation system.The interplay between the design and construction techn...With the advancement of the economy,the construction of roads and bridges has assumed a crucial role in the development of China’s highway transportation system.The interplay between the design and construction technologies of road bridges is pivotal,as it directly impacts the subsequent operation and maintenance phases.Although the design and construction techniques for continuous girder transitions have been progressively improving,challenges still persist.This paper takes the example of the continuous girder design for the T-structure(75 m+75 m)of the Xintai Highway Crossing Yanzhou-Shijiusuo Railway Separation Interchange Project and delves into an analysis of the structural design calculations for the bridge transition,the transition structure’s design,and critical considerations during construction.The findings presented here can serve as a valuable reference for similar project designs.展开更多
In this paper,a research was conducted on the design technology of continuous beam-arch composite bridges.A brief introduction is given on the of continuous beam-arch composite bridges,its basic mechanical characteris...In this paper,a research was conducted on the design technology of continuous beam-arch composite bridges.A brief introduction is given on the of continuous beam-arch composite bridges,its basic mechanical characteristics is analyzed,and three aspects of design technology is studied,which are rise-span ratio,stiffness ratio,and bridge deck cracking.This article acts as a reference for relevant design units in China to improve the design of continuous beam-arch combination bridges.展开更多
Under the rapid development of socio-economy and urbanization,the state’s attention toward urban infrastructure continues to increase.The construction of municipal road and bridge projects is related to people’s dai...Under the rapid development of socio-economy and urbanization,the state’s attention toward urban infrastructure continues to increase.The construction of municipal road and bridge projects is related to people’s daily travel and transport safety,and it also plays an important role in promoting urban economic development.Therefore,modern technology should be fully utilized in the design of municipal roads and bridges to strengthen construction cost control and increase their social and economic benefits.In this paper,the characteristics and application status of BIM technology in municipal road and bridge design are analyzed,and corresponding road and bridge design strategies are explored to promote the healthy development of municipal road and bridge projects.展开更多
An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expans...An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.展开更多
The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Cons...The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Construction'(MCEER Project 112),which was completed in 1998.MCEER coordinated the work of many researchers,who performed studies on the seismic design and vulnerability analysis of highway bridges,tunnels,and retaining structures. Extensive research was conducted to provide revisions and improvements to current design and detailing approaches and national design specifications for highway bridges.The program included both analytical and experimental studies,and addressed seismic hazard exposure and ground motion input for the U.S.highway system;foundation design and soil behavior: structural importance,analysis,and response:structural design issues and details;and structural design criteria.展开更多
In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of...In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,展开更多
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
文摘Highway bridges are an important part of transportation infrastructure.With the rapid development of transportation,the design of bridge construction has received significant attention.The complex environment of some regions necessitates the selection of seismic design to improve the stability of the structure during the design phase of highway bridge construction.This article briefly discusses bridge structures that may be subject to seismic hazards and analyzes seismic design standards to explore their application in the design process of highway bridges,with the aim of providing support for bridge construction.
文摘This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.
文摘The combined prefabricated steel-hybrid stacked girder structure is very common in modern bridge design.An actual bridge engineering design project is taken as an example in this paper to analyze the application strategy of this structure,encompassing overall design strategy,structural design strategy,and structural calculation strategy.The aim is to offer insights that can enhance the quality of bridge design.
文摘Bridge engineering is highly specialized and has spatial characteristics,which puts forward higher requirements for design work.The advancement of information technology has provided ample tools to facilitate bridge design work,with building information modeling(BIM)technology being one of them.BIM technology ensures the efficiency and quality of the forward design of bridges,while also reducing construction costs.This article starts with defining the concept of BIM technology,followed by a discussion on its advantages in bridge design and application process,which serves as a reference for other bridge designers.
文摘China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconnected through bridges,but constructing highway bridges through complex terrains or across valleys and mountain gullies presents significant challenges,requiring an increase in the height of bridge piers.These bridge piers generally reach tens or even hundreds of meters in height.Furthermore,the construction of these high-pier bridges is becoming increasingly widespread.Not only do they pose greater construction challenges,but they also have higher requirements for seismic resistance.This article primarily analyzes the characteristics of high-pier bridges and proposes seismic design schemes,calculation methods,and design strategies to enhance the construction quality of high-pier bridges.
文摘In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project as an example,and analyses the overall selection design of such highway bridges,including the basic overview of the project,the basic selection principle of mega highway bridge project structure and its design strategy,etc.,to provide scientific reference for its selection design.
文摘This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge structure.The purpose of this paper is to provide robust support for enhancing the design quality of these bridges and ensuring their efficacy in real-world applications.
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.
文摘As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.
基金supported by the National Key Research and Development Program of China(Grant Nos.2019YFB1600700 and 2019YFB1600701)the Wuhan Maritime Communication Research Institute(Grant No.2020MG001/050-22-CF).
文摘Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
文摘Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake.
文摘Changqing Yellow River Super-long Bridge of Zhengzhou-Ji'nan HSR is a partial cable-stayed bridge with concrete main girder and a unit length of 1,080 m.Studies are carried out on the key technologies of bridge design,and the main conclusions are as follows:The whole unit adopts the supporting system of tower pier consolidation and tower-beam separation,and each pier is provided with seismic mitigation and isolation bearing;shaped-steel reinforced concrete bridge tower is adopted to bring into full play the tensile performance of steel and the compressive performance of concrete,and avoid the construction challenges of setting up multi-layer and multi-stirrup reinforcement while improving the bearing capacity of section;a new type of double-side and bi-directional anti-skid anchorage device is adopted for the cable saddle of wire divider pipe in order to withstand the unbalanced cable force,and verify the reliability of the anti-skid anchorage device by solid model test;and large-segment cantilever pouring design is adopted for the main girder with a maximum segment length of 8 m to effectively shorten the construction period of the bridge.
文摘With the advancement of the economy,the construction of roads and bridges has assumed a crucial role in the development of China’s highway transportation system.The interplay between the design and construction technologies of road bridges is pivotal,as it directly impacts the subsequent operation and maintenance phases.Although the design and construction techniques for continuous girder transitions have been progressively improving,challenges still persist.This paper takes the example of the continuous girder design for the T-structure(75 m+75 m)of the Xintai Highway Crossing Yanzhou-Shijiusuo Railway Separation Interchange Project and delves into an analysis of the structural design calculations for the bridge transition,the transition structure’s design,and critical considerations during construction.The findings presented here can serve as a valuable reference for similar project designs.
文摘In this paper,a research was conducted on the design technology of continuous beam-arch composite bridges.A brief introduction is given on the of continuous beam-arch composite bridges,its basic mechanical characteristics is analyzed,and three aspects of design technology is studied,which are rise-span ratio,stiffness ratio,and bridge deck cracking.This article acts as a reference for relevant design units in China to improve the design of continuous beam-arch combination bridges.
文摘Under the rapid development of socio-economy and urbanization,the state’s attention toward urban infrastructure continues to increase.The construction of municipal road and bridge projects is related to people’s daily travel and transport safety,and it also plays an important role in promoting urban economic development.Therefore,modern technology should be fully utilized in the design of municipal roads and bridges to strengthen construction cost control and increase their social and economic benefits.In this paper,the characteristics and application status of BIM technology in municipal road and bridge design are analyzed,and corresponding road and bridge design strategies are explored to promote the healthy development of municipal road and bridge projects.
基金National Natural Science Foundation Under Grant No.50578118
文摘An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.
基金the Federal Highway Administration under contract number DTFH61-92-C-00112.
文摘The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Construction'(MCEER Project 112),which was completed in 1998.MCEER coordinated the work of many researchers,who performed studies on the seismic design and vulnerability analysis of highway bridges,tunnels,and retaining structures. Extensive research was conducted to provide revisions and improvements to current design and detailing approaches and national design specifications for highway bridges.The program included both analytical and experimental studies,and addressed seismic hazard exposure and ground motion input for the U.S.highway system;foundation design and soil behavior: structural importance,analysis,and response:structural design issues and details;and structural design criteria.
基金Federal Highway Administration at the University at Buffalo under Contract No.DTFH61-08-C-00012
文摘In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively,